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REPRESENTATION AND TRANSFER
OF ABSTRACT MATHEMATICAL
CONCEPTS IN ADOLESCENCE
AND YOUNG ADULTHOOD

JENNIFER A. KAMINSKI AND VLADIMIR M. SLOUTSKY

By adolescence, students are learning more abstract and complex concepts,
such as those of algebra and geometry. Itis tempting to introduce these concepts
through concrete, familiar instantiations that might deeply engage students in
the learning process and possibly facilitate initial learning. However, a primary
goal of acquiring mathematical concepts is the ability to apply structural knowl-
edge outside the learning situation, and there is evidence that concrete instan-
tiations can hinder transfer. This chapter addresses how successful analogical
transfer is influenced by characteristics of the learning and target domains. We
discuss results of a series of studies demonstrating that learners are more able
to transfer mathematical structure from a learned generic instantiation than
from a learned concrete instantiation. We suggest that concrete instantiations
of abstract concepts communicate more extraneous information than their more
abstract, generic counterparts. This extraneous information is retained in the
learner’s representation of the concept and hinders subsequent transfer. Impli-
cations for learning abstract concepts such as mathematical concepts in adoles-
cence and young adulthood are discussed.

This research was supported by a grant from the Institute of Educational Sciences, U.S. Department of

Education (#R305B070407).
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The period from adolescence to young adulthood is a time when math-
ematical reasoning and problem solving become more sophisticated. In the
preschool and elementary school years, much of children’s mathematical
knowledge concerns numbers and arithmetic. By adolescence, children are
acquiring more abstract and complex concepts, such as those of algebra and
geometry. For most students, the acquisition of this knowledge is not without
its difficulties. How should mathematical concepts, such as probability theory,
exponential growth, and rates of change, be introduced to students to ease
these difficulties and best promote their acquisition and application to
real-world problems? This chapter addresses how successful analogical
transfer is influenced by characteristics of the learning and target domains.
In particular, we discuss concepts featured in high school and college cur-
ricula, such as exponential growth, group theory, and rates of change (e.g.,
in physics).

One possibility is that such concepts are well acquired through con-
crete instantiations such as contextualized, real-world examples. Concrete
approaches to learning have been advocated not only for very young chil-
dren but also for older learners, such as adolescents and adults (for a review,
see Anderson, Reder, & Simon, 1996). Support for such approaches often
stems from the belief that because cognition is bound to specific situations,
teaching abstractions is ineffective. Alternatively, students might learn
more effectively through more abstract, generic instantiations of mathe-
matics that present a minimal amount of extraneous information, such
as traditional mathematical notation involving generic symbols not tied
to specific situations. For example, acceleration is defined as the rate of
change of velocity with respect to time. Students could learn the concept
of acceleration through a concrete context of gravitational acceleration
affecting falling objects or instead through the generic expression of
a= % where a is acceleration, Av is change in velocity, and At is change
in time.

To evaluate the effectiveness of concrete and generic instantiations,
several questions should be considered. What is the definition of a concrete
instantiation? What constitutes successful acquisition of a mathematical con-
cept? How does learning a particular instantiation shape the internal repre-
sentation of a mathematical concept and influence the learner’s ability to
transfer mathematical knowledge to novel analogous situations? In this chap-
ter, we discuss the results of a series of studies conducted to address these ques-
tions. We begin by presenting an interpretation of concrete and abstract
instantiations of mathematical concepts and an overview of previous findings
on analogical transfer.
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CONCRETENESS

In everyday practice, the term concrete is typically used in contrast to
abstract often to differentiate what can and cannot be directly experienced by
the senses. These terms can be used in seemingly different situations. For
example, there would be little disagreement that the concept “cat” is more
concrete than the concept “infinity.” This is a comparison of the concreteness
of two different concepts. Concreteness can also be compared between instan-
tiations of the same concept; there would also be little disagreement that a real
cat is a more concrete instantiation of the category “cat” than a schematic out-
line. Do these examples point to the same way of defining concreteness across
different situations? We suggest that the answer is yes. In both cases, concrete-
ness could be measured by the amount of information (or the amount of
entropy reduction) communicated by a given concept or instantiation. Under
this view, the concept “cat” communicates the presence of a feline animal and
all the known facts associated with cats, assuming that one has prior knowl-
edge of cats. The concept “infinity” communicates much less information (in
fact, any set could potentially be infinite), thus leaving a great deal of uncer-
tainty. Similarly, a real cat leaves less uncertainty than a schematic outline
that does not communicate information such as color, size, or age. In both
cases, therefore, the former is substantially more concrete than the latter.

For instantiations of a fixed concept such as “cat,” if concreteness can be
measured by the amount of communicated information, then concrete and
abstract are not dichotomous; rather, they lie on a continuum over which the
amount of communicated information varies. Specifically, for a given concept,
instantiation A is more concrete than instantiation B, if A communicates more
information than B. Furthermore, an instantiation of a concept (e.g., a particu-
lar cat) is often represented by a symbol that communicates information either
perceptually, by the amount of detail in the physical stimuli, or verbally, by pro-
viding descriptions with different amounts of detail. Perceptually communicated
concreteness often results in greater perceptual richness of an instance, which
could be measured by physical properties such as contrast and spatial frequency.

To elaborate this point, consider the concept of “person” and how pos-
sible symbols can communicate different degrees of information. For exam-
ple, images in Figure 3.1 communicate increasing amounts of information
from left to right. Little could be said with certainty about the leftmost instan-
tiation of a person; this most abstract, generic instantiation communicates
only numerosity—the fact that there is a single individual. On the other
hand, much could be said about the rightmost instantiation. Namely, this is
a specific person, she is a young female, and she was born to an Asian parent.
There would be even more information that could be retrieved from memory
if the photograph depicts someone you know.

REPRESENTATION AND TRANSFER OF ABSTRACT MATH CONCEPTS 69

R e O G T o e g e i



Increasing information/ Increasing concreteness

A 4

Jola

Figure 3.1. Possible symbols for the concept person.

It seems that a more abstract instantiation is often a better symbol of a
given concept, to denote the entire group, than a more concrete instantia-
tion. This is because a more concrete instantiation communicates much more
information, part of which could be extraneous to the concept in question.
For example, a stick figure can symbolize any person, yet a young schoolgirl
may not well symbolize any person because it communicates additional infor-
mation such as age and gender, which is nonessential to the concept of per-
son. Similarly, a concrete instantiation may be a poor symbol for another
concrete instantiation that does not share the same superficial features. There-
fore, a schoolgirl is not a good symbol for a middle-aged man, and a middle-aged
man is not a good symbol for a schoolgirl.

By the same reasoning, generic instantiations may serve as better sym-
bols when attempting to communicate new, to-be-learned information about
a given concept. For example, the lifetime risk of heart disease regardless of
gender would probably be better communicated with a stick figure or generic
example of the general population than with a picture of a young girl. Simi-
larly, a photograph of a young girl would not make a good symbol when com-
municating information about a specific subset of the general population,
such as the prevalence rate for prostate cancer in middle-aged men.

NATURE OF MATHEMATICAL CONCEPTS
AND THEIR INSTANTIATIONS

Just as many everyday object concepts and their instantiations can vary
in the amount of communicated information, mathematical concepts and
their instantiations can also vary in the degree of communicated information.
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However, there are critical differences between mathematical concepts and
concepts such as “cat” or “person.” Most everyday concepts are ill-defined
(see Solomon, Medin, & Lynch, 1999) in the sense that their definitions
can vary across cultures, individuals, and time. Furthermore, everyday con-
cepts such as “cat” are grounded in perceptual similarity and acquired with
little effort through encounters with instances of the concept (Kloos &
Sloutsky, 2008). For example, most cats tend to have common observable
features—similar size, four legs, whiskers, and pointed ears—and young
children acquire this concept easily. Mathematical concepts, however, have
precise definitions based on their relational structure. For example, expo-
nential growth is defined as the change in quantity N according to the fol-
lowing formula:

N(t) = Nye™ (1)
E‘ for a variable tand constant o, where e~ is the exponential function and Nj is
p-olof a the initial value of N. Therefore, the concept of exponential growth is defined
gr=Tantia- by the relational pattern between Np, N(1), N(2), etc. Instances of mathe-
BcT more matical concepts specify additional information beyond the defining rela-
pooestion. tional structure. Instantiations of exponential growth would specify particular
p—oolgirl values of the constants o and N,. More concrete instantiations would convey
pr:] infor- more information—perhaps growth of a particular population of wild eastern
g of per- cottontail rabbits living in the midwestern United States.
& :nother Therefore, for mathematical concepts, instances can be vastly dissim-
pe=. There- ilar, sharing few directly observable similarities. For example, in addition to
moCle-aged describing populations of rabbits, exponential growth/decay can describe
the metabolism of medication in the body and the temperature of a cooling
et sym- cup of coffee. Because superficial features can vary widely, it is often diffi-
w1 about cult to spontaneously recognize instances of the same concept. As a result,
;;@:iless (?f the acquisition of such concepts is often difficult for both children and
BT zeneric adults and typically requires some supervision (e.g., Kloos & Sloutsky,
P Simi- 2008), which may take the form of explicit instruction that begins with an
poen com- initial instantiation.
peralation, One goal of learning mathematics is the ability to appropriately apply

mathematical knowledge to novel situations. Therefore, an effective instan-
tiation must promote two processes: learning of the instantiation and trans-
fer of defining relational structure to a novel situation that is structurally
analogous, or isomorphic. For example, successfully acquiring the concept of
exponential growth from learning about growth of a rabbit population would
imply that knowledge of exponential growth would be recognized and applied
to (at least some) novel analogous situations, such as monetary growth of
investments.
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ANALOGICAL TRANSFER

text il
under
How likely is it that structural knowledge will transfer outside of the asked
learned situation? The past 20 years have produced a consensus on some reflec
aspects of analogical transfer. First, spontaneous analogical transfer is notori- (Bass
ously poor. This finding has been documented in numerous studies with both retari
adults and children (e.g., Gick & Holyoak, 1980, 1983; Goswami, 1991; ers of
Novick, 1988; Reed, Dempster, & Ettinger, 1985; Reed, Ernst, & Banerji, entiti
1974; Simon & Reed, 1976). Second, a factor that mediates transfer is simi- them
larity of the base and target domains. Transfer to similar instances, or near
transfer, is more likely to occur than transfer to dissimilar instances, or far nintl
transfer (Holyoak & Koh, 1987; Holyoak & Thagard, 1997; Ross, 1987, ‘
1989). High surface similarity between the base and the target domain can differe
facilitate spontaneous retrieval of prior knowledge (Gentner, Ratterman, & Prete(
Forbus, 1993). For example, college students who learned solutions to prob- Ingm
ability story problems were more likely to remember solution strategies and '
formulas when presented with novel isomorphic problems that involved sim- n stru
ilar story lines (e.g., both study and test problems involved mechanics ran-
: . . nume
domly choosing cars to work on) rather than dissimilar story lines (e.g., the .
study problem involved mechanics choosing cars, and the test problem
involved scientists choosing computers; Ross, 1987, 1989). f)?:ler?
Finally, there is evidence that during successful analogical transfer, the semar
reasoner aligns the learned and novel domains according to common struc- ple, it
ture (Gentner, 1983, 1988; Gentner & Holyoak, 1997; Holyoak & Thagard, tuliyps
1989). Similarity can also affect transfer by affecting the process of structural bly m.
alignment. Because similar elements are easier to align than dissimilar ones add a
(Gentner, 1983, 1988; Gentner & Markman, 1997; Markman & Gentner, inter
1993), structural alignment is facilitated when similar elements play identi- morpl
cal structural roles across the learning and transfer domains. As a result, trans- when
fer is more successful when similar elements hold analogous roles in both asym
domains (e.g., for probability problems, both study and test problems involve tion st
mechanics choosing cars; Ross, 1987, 1989; for related findings, see Reed, proble
1987). However, when similar elements hold different structural roles across partic
domains (e.g., the study problem involves mechanics choosing cars and the differe
test question involves car owners choosing mechanics), learners tend to mis- -
align structure by matching common elements (Ross, 1987, 1989), and con- been ¢
sequently transfer fails. sok &
Although surface features can affect both recall of previous domains and pool w
alignment between two domains, there is evidence that they can also influ- of nun
ence the manner in which learners interpret the structure of a domain. In a to onl
series of studies involving algebra word problems, Bassok and her colleagues bers).
have demonstrated that students often interpret structure through the con- lems a
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text in which it is presented (for summaries, see Bassok, 1996, 2003). When
undergraduate students with no prior knowledge of probability theory were
asked to solve permutation problems, their spontaneous solutions typically
reflected semantic symmetry or asymmetry of the elements of the problem
(Bassok, Wu, & Olseth, 1995). For example, some problems involved m sec-
retaries assigned n computers. In everyday scenarios, secretaries and comput-
ers often play asymmetric semantic roles because they are different types of
entities and secretaries may use computers. Participants generally placed
them in asymmetric arithmetic roles, often involving m in the numerator and

;7T near 3
-1 far n in the denominator (e.g., W ). Students tended to generate categorically
. n!
e. 987, : . , . . . .
b — can different solutions to isomorphic problems involving elements that are inter-
. & preted as semantically symmetric. For instance, when given problems involv-
piiosi ol . . . . .
§ ~rob- ing m doctors working with n doctors, participants tended to place m and n
b and | | [m#n] -
b= i in structurally symmetric roles (e.g., 3, here m and n appearing in both the
= sim- [mn]
I@mi radl;l' numerator and denominator).
e "‘_I'l ¢ The behavior of interpreting structure through semantics of the context
fipr. clem can often be a smart approach to problem solving because mathematics is
T often used to model the structure of real-world situations and therefore
szT. the

semantic structure often correlates with mathematical structure. For exam-
ple, it is probably more expected to add a number of roses and a number of
tulips than to divide a number of roses by a number of tulips. It is also proba-

s _ctural bly more expected to divide a number of roses by a number of vases than to
mLiT Ones add a number of roses to a number of vases. The downside of using context to
K.m=mmef, interpret structure occurs when attempting to transfer between two iso-
B Centi- morphs that do not share a common structural interpretation. For example,
WL Tans- when students learned solutions to permutation problems in a semantically
® = Soth asymmetric context (e.g., tulips to vases), they successfully transferred solu- -
m rolve tion strategies to novel asymmetric problems but failed to do so to symmetric
= —eed, problems (e.g., tulips and roses; Bassok, Wu, & Olseth, 1995). Not only did
M~ :TOSS participants fail to transfer, they were very confident that the two problems
w .1 the differed in their mathematical structure.

B~ mis- Transfer failure attributed to different structural interpretations has also
far = con- been demonstrated between continuous and discrete models of change (Bas-

sok & Olseth, 1995). For example, the change in the volume of water in a
pool would be continuous (able to take on any real number within some range
of numbers), whereas the change in people in a pool would be discrete (limited
to only a subset of values within a range of numbers, in this case whole num-
bers). In one study, undergraduate students were taught solutions to word prob-
lems and then given novel problems in a different context. All the problems
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involved constant rates of change and could be solved by the same solution
_ strategy. The contexts included populations, money, and basic physics. What
differed between base and target domains was not only the cover story but also
] whether the change was interpreted as continuous or discrete. For example,
some contexts involved the rate at which ice is melting from a glacier, while
other contexts involved the rate at which ice is regularly delivered to a
restaurant. When both base and target domains shared the type of change
(continuous or discrete), transfer was much more likely than when the
domains differed in type of change. Furthermore, an asymmetry was found
in which transfer was more likely to occur from a discrete-change domain to
a continuous-change domain than the reverse. These findings demonstrate
that learners often interpret structure through context and that their inter-
pretations can lead to transfer failure when novel isomorphs have contexts

that appear to be structurally different.
‘ One way of facilitating successful transfer from concrete instantiations is
‘ through explicit comparison of multiple instances. Several studies involving
both children and adults have demonstrated better performance on relational
tasks after comparing two instances than after learning only one instance or
learning two instances sequentially (e.g., Catrambone & Holyoak, 1989;
1 Gentner, Loewenstein, & Hung, 2007; Gentner, Loewenstein, & Thompson,
2003; Gentner & Namy, 2004; Gick & Holyoak, 1983). Adults who learned
negotiation strategies (e.g., compromise on all issues vs. trade-off on specific
issues between two parties) were more successful transferring learned strategies
to novel situations when they first compared and noted similarities of two
examples relative to those who only read and summarized the examples sepa-
rately (Gentner et al., 2003). There is also some evidence of better conceptual
and procedural knowledge of mathematical equation solving after middle
school students compared two examples, particularly when the examples pre-
! sented different solution methods, than after learning examples in succession
| (Rittle-Johnson, Star, & Durkin, 2009). The process of comparison can high-
\ light common relational structure (Kotovsky & Gentner, 1996) and result
| in the construction of an abstract schematic representation of knowledge
(Catrambone & Holyoak, 1989; Gick & Holyoak, 1983). Schematic knowl-
edge representations can in turn promote subsequent transfer (Gick &

Holyoak, 1983; Novick & Holyoak, 1991; Ross & Kennedy, 1990).

Taken together, prior research suggests that learners can form represen-
tations of abstract concepts, including mathematical concepts, through learn-
ing concrete instantiations, but these representations are far from purely
abstract. A purely abstract representation, like mathematical definitions
themselves, would contain nothing beyond the structural relations. However,
internal representations contain considerable superficial information retained
from the learning context. The existence of this information in a representa-
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tion is not necessarily a bad thing per se. This information may be harmless
in the case of a teacher being able to illustrate multiple examples of mathe-
matical models of real-world phenomena. This information may, in some
instances, be helpful because it may facilitate transfer to analogous, superfi-
cially similar situations. The negative impact occurs when nonessential infor-
mation is interpreted as essential. The learner incorporates this information
into the representation of the concept, and as a result transfer fails when
potential transfer domains lack this extraneous information. Learning and
comparing multiple instances can highlight common relational structure.
The highlighting of common relations likely lessens the representational
weight of any one set of superficial features and as a result a schematic repre-
sentation is formed. However, an abstract schema does not appear to supplant
mental representations of individual exemplars. As Medin and Ross (1989)
suggested, abstract and specific knowledge coexist, with reasoning often case-
based and induction often conservative.

in s is
B ing
s nal
BrC: Of
k239,
fmc<on,
i :ed

SUPPORT FOR THE USE OF CONCRETE
MATERIAL IN TEACHING

The previously discussed studies have investigated analogical transfer from
a variety of concrete instantiations. In educational practice, the use of concrete
instantiations to present mathematics is widespread. Several arguments support

B T WO this practice (for discussions, see McNeil & Uttal, 2009; Uttal, Scudder, &
e <pa- DeLoache, 1997). First, some developmental theories posit that development
me-cual proceeds from the concrete to the abstract (e.g., Bruner, 1966; Montessori, 1917;

mdle Piaget, 1970), and therefore teaching and learning should follow the same
Bl TTE- sequence (for a discussion, see McNeil & Uttal, 2009). Second, concrete instan-
k0N tiations may be more engaging for the learner than more abstract, generic instan-
w ~_ch- tiations; certainly, engagement in learning is necessary. Third, some concrete
m -=ult instantiations may tap prior knowledge and therefore facilitate initial learning.
o = Jge There is some evidence that mathematical problem solving can be more
B wl- accurate when presented in familiar, concrete contexts than when presented
G & as decontextualized, symbolic mathematics. For example, adolescent Brazil-
i ian street vendors were able to solve arithmetic problems in the contexts of
Br—<n- their sales but were unable to solve the same problems presented as symbolic

mathematics (Carraher, Carraher, & Schliemann, 1985). Yet evidence of the
effectiveness of concrete instantiations in teaching formal mathematics is not
unequivocal (Sowell, 1989; Uttal, Liu, & DeLoache, 1999; Uttal, O’Doherty,
Newland, Hand, & DeLoache, 2009). For example, Koedinger and Nathan
(2004) demonstrated that algebra students were more successful in solving
simple story problems than analogous mathematical equations, often using
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informal strategies such as guess-and-check to arrive at accurate solutions.
However, for more complex problems, the reverse was the case: Students were
more successful solving symbolic equations than solving word problems
(Koedinger, Nathan, & Alibali, 2008). Therefore, concrete contexts may
sometimes provide an advantage over decontextualized symbolic mathemat-
ics for problem solving. It is important to note that these findings were
demonstrated for learning and problem solving in a single context (that of
the individual problem). Nevertheless, for mathematical concepts, an impor-
tant goal of learning is not only to acquire knowledge and problem-solving
ability in a particular context but also to transfer the acquired mathematical
knowledge to multiple novel contexts. Thus, while students may sometimes
more accurately solve problems with concrete instantiations than analogous
symbolic instantiations, the question remains: How likely is it that students
will transfer the mathematical structure learned from concrete instantiations
versus one learned from generic instantiations?

CONCRETENESS AS PERCEPTUAL RICHNESS

As discussed earlier, one dimension of concreteness is perceptual rich-
ness. Perceptual richness can hinder transfer of relations for both children and
adults. One line of evidence comes from studies of young children’s symbol
use (DeLoache, 1991, 2000). Successful symbol use requires transfer of rela-
tions from one domain to another. For example, to effectively use a map as a
symbol for a real location, one must recognize the common relations between
entities on the map and their real-world analogs. In one study, children ages
2 and 3 years were shown the location of a toy in either a three-dimensional
scale model or a two-dimensional picture and then asked to retrieve a real toy
in an analogous location in a real room. Perhaps counterintuitively, those
who were shown the picture were more successful than those who were shown
the more realistic concrete model. A similar advantage for more generic
material was found for prelinguistic infants, who were better able to extend
labels from generic, perceptually sparse objects to perceptually rich objects
than the reverse (Son, Smith, & Goldstone, 2008). Clearly, if young children
benefit from generic instantiations of concepts, adolescents and young adults
could be expected to do so, too.

As expected, not only does perceptual richness hinder young children’s
ability to transfer simple relations, it also can hinder adults’ ability to trans-
fer acquired knowledge of more complex structures. In one study (Goldstone
& Sakamoto, 2003), undergraduate students learned the principle of compet-
itive specialization, which explains how individual agents self-organize with-
out a central plan. When students learned through a scenario of ants foraging
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for food, transfer to a novel isomorph was more successful when the ants and
food were depicted more abstractly as dots and patches than when the depic-
tions resembled ants and apples.

The studies discussed thus far varied the perceptual richness of the same
instantiation. In contrast, we wanted to investigate the effect of concreteness,
including perceptual richness, varied across different instantiations of the
same mathematical structure. This is analogous to real-world scenarios in
which mathematics may transfer between instantiations of different degrees
of concreteness, such as generic symbolic notation and perceptually rich, sci-
entific applications. In a series of studies, we varied the concreteness of the
learning instantiation to consider its effect on transfer of mathematical struc-
ture. We chose a simple mathematical concept that we could instantiate in a
variety of different ways that would appear novel to our study participants.
The concept was that of a commutative mathematical group of order 3. This
is a set of three elements, or equivalence classes, and an associated operation
that has the properties of associativity and commutativity. In addition, the
group has an identity element and inverses for each element (see Table 3.1
for properties). In our experiments, training was presented via computer and
consisted of explicit presentation of the group rules using the elements of the
given instantiation, questions with feedback, and examples. After training,
participants received a multiple-choice test of novel complex questions.

In our first experiment, we considered concreteness as perceptual rich-
ness of the elements and context. Undergraduate students were trained and
tested with an abstract, generic instantiation and a perceptually rich, con-
crete instantiation (Sloutsky, Kaminski, & Heckler, 2005). The generic
instantiation was described as a written language involving three simple,
monochromatic symbols in which combinations of two or more symbols
yield a predictable resulting symbol. Statements were expressed as symbol 1,
symbol 2 — resulting symbol. The concrete condition presented an artificial
phenomenon involving images of three colotful, three-dimensional shapes.
Participants watched movies of two or more shapes coming into contact, then

TABLE 3.1
Principles of Commutative Mathematical Group

A commutative group of order 3 is a closed set of three elements and a binary operation
(denoted +) with the following properties:

Associative For any elements x, y, z: ((x+ y) + 2 = (X + (y + 2))
Commutative Forany elements x, y: x+y=y+x
Identity . There is an element, I, such that for any element, x: x+1=x
Inverses For any element, x, there exists another element, y, such that
x+y=1
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disappearing, and a resulting shape appearing. For both instantiations, the
resulting symbol or shape was specified by the mathematical structure. After
training and testing of one instantiation, participants were trained and tested
with the other instantiation. We found that participants successfully learned
both instantiations, with no difference in mean test score on the generic
instantiation no matter which instantiation they learned first. However, there
was a marked difference in mean test score on the concrete instantiation, with
participants who were initially trained with the generic instantiation scoring
higher on the concrete test than did participants who were initially trained
with the concrete instantiation. In other words, learning the concrete instan-
tiation resulted in no improved learning of the generic instantiation. On the
other hand, learning the generic instantiation resulted in better performance
on the concrete instantiation, suggesting that participants were able to trans-
fer their knowledge from the generic to the concrete instantiation.

In a second experiment, we considered the effects of perceptual richness
on initial learning. Participants learned an instantiation of a group that had
different levels of concreteness: (a) generic black symbols; (b) colorful, pat-
terned symbols; (c) classes of colorful, patterned symbols; or (d) classes of real
objects. After training, participants were given a test of novel questions on
the same instantiation. While all participants learned the rules, those who
learned with the generic symbols scored significantly higher than did the
other participants, with no differences across these three conditions (Slout-
sky et al., 2005). Therefore, the mere addition of patterns and color lowered
learning. Similar negative effects of perceptual richness were demonstrated
in another recent study: Children ages 10 to 12 years made more errors on
word problems involving money when they were given real bills and coins to
help them solve the problems than children who were not given real money
(McNeil, Uttal, Jarvin, & Sternberg, 2009).

The results of these experiments indicate that perceptual richness that
is irrelevant to the to-be-learned concept hindered both learning and trans-
fer. However, not all concreteness is irrelevant. Some concreteness may help
to communicate relevant structure by tapping prior knowledge or by present-
ing perceptual information that is correlated with structure. This “relevant
concreteness” would most likely facilitate learning of a novel concept, but its
effect on transfer has not been clear.

RELEVANT CONCRETENESS

To investigate the effects of such relevant concreteness, we instantiated
the concept of a mathematical group in a context involving familiar objects that
might facilitate learning of the group rules (Kaminski, Sloutsky, & Heckler,
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Figure 3.2. Generic and concrete instantiations of a mathematical group.

is‘the identity

2005a). In this case, the elements of the group were three measuring cups (see
Figure 3.2). Instead of learning arbitrary rules of symbol combinations, par-
ticipants were told that they needed to determine a leftover amount of liquid
when different measuring cups were combined. For example, combining

resulted in Q left over. We compared learning this instan-
tiation with learning a generic instantiation. This generic instantiation was
described, as in our earlier studies, as the rules of a symbolic language. Train-
ing consisted of explicit statements of the rules and one example. After train-
ing, participants answered a series of multiple-choice questions. The following
are example questions from the generic learning condition.

1. What can go in the blanks to make a correct statement?

IR AN =Y |

2. Find the resulting symbol:

‘OO0 N—
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The concrete condition presented the analogues of these questions. All de
training and testing was isomorphic across conditions. Participants in both tre
conditions successfully learned the instantiation, but under the minimal (7
training that they received (only one statement of the rules and one exam- tiv
ple), the relevantly concrete instantiation did have an advantage over the th
generic (81% vs. 63% correct, with chance = 38%). av

To test whether this advantage would exist for transfer, we gave partic-
ipants slightly more detailed training, including explicit examples and an
questions with feedback. Subsequently, as in the previous experiments, par- tic
ticipants were tested and then presented with a novel isomorphic instantia- tic
tion of mathematical group. This novel instantiation was intentionally an
concrete and contextually rich, as are many real-world instantiations of tic
mathematics, and was described as a children’s game from another country. co
Specifically, participants were asked to figure out the rules of the game. In the wWe
game, children point to a series of objects, then the child who is “it” points Sl
to a final object. This child wins if he or she points to the correct object in:
according to the rules (see Figure 3.3). Participants were told that the rules of
the game were like the rules of the system they had just learned (i.e., either u
the concrete or the generic instantiation). Then, participants were shown a pe
series of examples from which the rules could be deduced. After seeing the ins
examples, a multiple-choice test, isomorphic to the test of the learning sik
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Figure 3.3. Instantiation of a commutative mathematical group used for the transfer tic

domain. les
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domain, was given. The results revealed that with the slightly protracted
training, there was no difference in learning scores across the two conditions
(78% correct vs. 75% correct for the concrete and generic conditions, respec-
tively). However, there was a striking difference in transfer. Participants in
the concrete condition had an average test score of 54% correct, while the
average score in the generic condition was 79% (with chance being 38%).

Because structural alignment is an essential component of successful
analogical transfer, we wanted to know whether participants in each condi-
tion were able to align structure between the learning and transfer instantia-
tions. As an indication of alignment, participants were asked to match
analogous elements across domains. In the generic condition, 100% of par-
ticipants were able to do so, whereas only 25% of participants in the concrete
condition made the correct match. Because there were three elements, we
would expect chance performance to result in 33% accuracy (Kaminski,
Sloutsky, & Heckler, 2005b). Therefore, those who learned the concrete
instantiation scored no better than guessing.

Why were participants in the concrete condition unable to align struc-
ture across the learning and transfer domains? There are two possibilities. First,
perhaps learners in the concrete condition formed a representation of that
instantiation that did not contain the relevant mathematical structure. It is pos-
sible that these participants were accurate on the test of the concrete instanti-
ation because the familiar elements and context allowed them to “bootstrap”
their way to correct answers without truly acquiring the mathematical struc-
ture. This possibility is reminiscent of Koedinger and Nathan’s (2004) finding
that algebra students often successfully solved simple story problems by using
informal strategies without resorting to formal algebraic solutions. The second
possibility is that the representation of the concrete instantiation did contain
structure, but that structure was tightly tied to the elements and context such
that learners were unable to recognize it in novel situations.

To test the possibility that failure to transfer from the concrete instan-
tiation was due to difficulty in aligning structure and not due to failure to rep-
resent structure, we conducted another experiment that was identical to the
previous one, with a single exception. Prior to the transfer test, we showed
half of the participants the matching of analogous elements across domains.

P

is like é ,

In the concrete condition, half were told

Q is like é In the generic condition, half were told the analogous align-
ments between the generic elements and transfer elements. The goal was to
assist learners with structural alignment by telling them the correspondence
of analogous elements. We found that when learners in the concrete condi-
tion were given the correspondence, they transferred as successfully as the
learners in the generic condition (85% accuracy for both condition). In the
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generic condition, there was no significant difference in transfer scores as a
function of being given the element correspondence, suggesting that partic-
ipants were able to spontaneously align structures between the learning and
transfer domains (Kaminski, Sloutsky, & Heckler, 2006c). The fact that partic-
ipants in the concrete condition were successful when assisted with structural
alignment also indicates that structure was acquired during learning. If they had
not actually learned the mathematical rules, it is highly unlikely that they would
perform so well on difficult transfer questions by simply being given a matching
of elements.

It seems that when acquiring a novel mathematical concept through a
concrete context, structural knowledge is represented but tied to the learn-
ing context in a way that inhibits its spontaneous recognition in other situa-
tions. To consider this possibility more carefully, we tested whether learned
structure could be recognized when instantiated with novel elements. Partic-
ipants were trained with either the concrete or generic instantiation of the
mathematical structure, as in the previous studies. After training, instead of
being presented with the transfer domain and a test of complex questions,
participants were given a structure discrimination task. On each trial, partic-
ipants were presented with a set of three expressions. They were told that
each set is from a new system and were asked whether the new system fol-
lowed the same type of rules as the system they had previously learned. Four
types of trials were used. Figure 3.4 shows examples of each type, as expressed
for the concrete condition. For the generic conditions, the analogous state-

same structure E+:R+ different structire E+/R-

same structure E-/R+
66 -4
d-0o

Figure 3.4. Example statements used for the structure discrimination task.
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ments were expressed with the generic black symbols. Six trials involved the
same elements as the learning phase and the same relational structure
(E+/R+). Six trials involved the familiar elements but different relational
structure (E+/R-). Six trials involved novel elements and the familiar rela-
tional structure (E—/R+). Another six trials involved both novel elements
and novel relations (E-/R-). To measure discriminability, we calculated the
number of correct “same structure” responses (on R+ trials) minus the num-
ber of incorrect “same structure” responses (on R— trials). We measured dis-
criminability separately for familiar elements and novel elements. For familiar
elements, participants in both conditions were highly accurate (90% correct).
However, there were dramatic differences when it came to novel elements.
Accuracy in the generic condition was 78%, while accuracy in the concrete
condition was only 26% (Kaminski, Sloutsky, & Heckler, 2006a).

These findings suggest that although structure is represented when learn-
ing a concrete instantiation, the most salient aspect of the representation is
the superficial, contextual information and not the important structural infor-
mation. In a follow-up study, we asked participants, after they had learned
either the concrete or the generic instantiation, to write down what they recalled
about what they had learned. We then counted the number of statements

referring to structure such as reiteration of rules (e.g., ‘ ‘ 3 ‘

or combining and has Q left over) and the number of state-
ments referring to superficial elements such as “it was about the discovery of
a symbolic language” or “it was about liquid in cups.” We found that those
who learned the generic instantiation made nearly 4 times as many structural
comments as those who learned the concrete instantiation. The responses of
the participants who learned the concrete instantiation contained approxi-
mately twice as many references to the superficial as references to structure.
The opposite pattern was observed for participants in the generic condition:
They made approximately 3 times as many references to structure as refer-
ences to the superficial (Kaminski, Sloutsky, & Heckler, 2009). These results
support the argument that the representation of the concrete instantiation
was overwhelmed by superficial information. They also suggest that structure
is salient in the representation of the generic instantiation. These findings
parallel ideas of fuzzy trace theory, which posits that transfer succeeds when
learners have formed “gist” knowledge representations that do not contain
detailed information (Reyna & Brainerd, 1995; Wolfe, Reyna, & Brainerd,
2005). According to fuzzy trace theory, transfer fails when learners have
formed detail-rich, verbatim knowledge representations. Because concrete
instantiations communicate an abundance of extraneous information in
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comparison to more generic instantiations, presenting a learner with a con-
crete instantiation may encourage the inclusion of extraneous details in the
representation, which hinders subsequent transfer.

As mentioned previously, one way of highlighting relational structure
and improving transfer is through learning multiple instantiations of the
same concept, particularly when learners compare instantiations. Given that
a generic instantiation allows the learner to spontaneously recognize and
transfer structure, we hypothesized that learning a generic instantiation may
be a more efficient route to a representation that allows for successful trans-
fer than learning multiple concrete instantiations. We tested this hypothe-
sis by assigning learners to conditions in which they learned one, two, or
three concrete instantiations or one generic instantiation (Kaminski, Slout-
sky, & Heckler, 2008). We used the previously described concrete and
generic instantiations and two other concrete instantiations. The two addi-
tional concrete instantiations involved pizzas and tennis balls and were
designed, as was the measuring cup scenario, to tap everyday knowledge in
familiar contexts. We equated the amount of training and testing across con-
dition; all participants were presented with the same rules and the same
number of examples, questions with feedback, and test questions. After
learning, participants were given the same transfer task used in our previous
experiments. We found a clear transfer advantage for learning a single generic
instantiation. Participants in the generic condition had approximately 78%
accuracy, while participants in the concrete conditions scored little or no bet-
ter than chance, at 38%.

In two follow-up experiments, we attempted to highlight structure
between learned instantiations (Kaminski et al., 2008). First, we considered
whether giving participants the correspondence of analogous elements across
two concrete learning instantiations would help integrate the representations
of each and increase the salience of the common structure. This manipula-
tion resulted in no improvement on transfer; scores were again no different
than chance. Second, we asked participants, after they had learned two con-
crete instantiations, to compare them, match analogous elements, and write
down any observed similarities. All participants correctly matched elements,
but the distribution of transfer scores was bimodal. Approximately 44% of our
participants scored high on the transfer test (mean score of 95% correct). The
remaining 56% of participants did not do well (mean score of 51% correct).
We concluded that the act of explicit comparison may help some learners
transfer but may not help others. Moreover, although those who did transfer
well scored very high on their initial test of learning, not all who scored high
on learning succeeded in transferring after comparison. Therefore, successful
learning is a necessary, but not sufficient, condition for successful transfer
after comparison.
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Given that concrete instantiations may have an advantage for initial
learning and generic instantiations can have an advantage for subsequent
transfer, we considered a possible “best of both worlds” scenario. We com-
pared transfer after learning the concrete instantiation and then the generic
instantiation to transfer when learning only the generic instantiation. Partic-
ipants in both conditions successfully transferred, but those who learned only
the generic significantly outperformed those who learned both (84% correct
vs. 65% correct; Kaminski et al., 2008).

Taken together, these findings suggest that learning a generic instanti-
ation of a mathematical concept can be an efficient, direct route to a
schematic knowledge representation that can allow for successful transfer.
Relational structure is the salient aspect, while elements and other superficial
features can be interchanged with those of other instantiations. On the other
hand, the course of forming such a representation from learning concrete
instantiations is not as efficient, requiring learning more than one instantia-
tion with less likelihood of subsequent transfer than after learning a single
generic. When only one concrete instantiation is learned, superficial infor-
mation dominates the representation and, in turn, interferes with transfer.
Even when two and three concrete instantiations were learned in sequence,
transfer failed, thus suggesting that these representations were stored inde-
pendently of each other and not integrated. The fact that learning a concrete
followed by a generic instantiation resulted in less transfer than learning a sin-
gle generic one suggests that superficial information remained in the repre-
sentation, interfering with successfully applying structural knowledge to the
transfer domain.

THE PROBLEM WITH CONCRETENESS

Why is extraneous information in the learning context so damaging for
transfer? We suggest that superficial information diverts attention from the
relevant relational structure. Attentional resources are limited, and evidence
suggests that superficial features and relational structure may compete for
attention (DeLoache, 1991; Goldstone, Medin, & Gentner, 1991; Uttal
etal., 1999). Goldstone, Medin, and Gentner (1991) suggested that in making
similarity comparisons between two situations, attention is split into two sepa-
rate pools, one for relational similarities and one for superficial similarities.
As one pool gets larger, it pulls attention toward itself and away from the
other pool. '

For concrete instantiations, the superficial features are salient and atten-
tion grabbing. It is possible, then, that attention is allocated to these superfi-
cial features and diverted from relational structure, not only during similarity
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comparisons but also in the formation of representations of conceptual
knowledge. When attempting to transfer, the learner needs to distinguish rel-
evant from irrelevant information and inhibit the irrelevant. Generic instan-
tiations have less superficial information and thus permit attention to be
focused more easily on relevant relational structure.

The results we have discussed in this chapter involved undergraduate
college students. It is possible that college students can successfully learn
generic instantiations and transfer structural knowledge, but younger learn-
ers may need a concrete instantiation to begin to grasp an abstract concept.
However, young children are less able than adults to control their focus of
attention (Dempster & Corkill, 1999; Diamond, 2006; Napolitano & Slout-
sky, 2004). Therefore, if the difficulty with concrete instantiations is due to
extraneous information diverting attention from relevant structure, then
concreteness may be at least as detrimental for younger children’s transfer as
it is for older students. To test this possibility, we taught 11-year-old children
cither the concrete or the generic instantiation and presented them with the
transfer domain, as in our earlier experiments. Participants in both conditions
successfully learned, but those who learned the concrete instantiation scored
higher than those who learned the generic (82% vs. 66% correct). However,
for the learners in the concrete condition, transfer scores were only margin-
ally above the chance score of 38% (47% correct), whereas transfer scores
in the generic condition were significantly above chance (61% correct;
Kaminski, Sloutsky, & Heckler, 2006b). These results suggest that although
the concrete instantiation was easily learned, it created an obstacle for chil-
dren to align structure and successfully transfer. These findings further sup-
port the argument that concrete instantiations hinder transfer because the
extraneous information diverts attention from relevant structure.

SUMMARY

Our research has compared learning of a novel mathematical concept
through concrete instantiations or througha single generic instantiation. We
found that relevant structure can be acquired from either concrete or generic
instantiations, but the manner in which it is internally represented by the
learner is categorically different in each case. Concrete instantiations com-
municate abundant extraneous information that may pull attention away
from the relevant relational structure. The result is a representation in which
the superficial is salient. This salient superficial information obfuscates the
analogy between learned and novel isomorphs because the learner is unable
to recognize structure in the novel situation. As a result, transfer fails. Suc-
cessful transfer from concrete instantiations requires additional measures such
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as directly aligning structure for the learner across instantiations or asking the
learner to compare multiple instantiations. However, potential transfer domains
are not always known a priori, making direct alignment often impossible, and
comparison may not always result in success.

Nevertheless, it seems that relational structure is the salient aspect of
representations formed from generic instantiations. Consequently, learn-

" ers spontaneously recognize structure and successfully transfer. Generic

instantiations of mathematics, such as traditional symbolic notation, can
be powerful educational tools providing efficient routes to portable knowl-
edge representations. Knowledge gleaned from such instantiations can be
applied to analogous situations that may appear on the surface to be quite
dissimilar.

DISCUSSION

The appeal of concrete learning material is certainly understandable.
Concrete instantiations of mathematical concepts are often perceptually rich
and attractive. They can perhaps generate a level of initial engagement and
interest for students that generic symbols may not. Some concrete instantia-
tions may be familiar and tap prior knowledge to provide a leg up in the learn-
ing process. Yet the very aspects of concrete instantiations that make them
engaging may also render them ineffective at promoting transfer. The com-
plete story of how concreteness influences the learning, transfer, reasoning,
and problem solving of mathematical knowledge over the lifetime of an indi-
vidual is likely a complex one. The results of the research discussed here pin-
point some of the difficulties learners encounter with concrete instantiations
of novel concepts.

In educational practice, concrete material such as base-10 blocks, Cuise-
naire rods, and many real-world instantiations such as pizzas are commonly
used. Many may wonder whether very young children may need concrete
instantiations to begin to acquire mathematical concepts, such as place value
or fractions. However, we are aware of no research that demonstrates an
advantage of concrete material over more generic material with respect to
transfer. If it is true that the difficulty in transferring mathematical knowledge
from concrete instantiations stems from extraneous information diverting
attention from the important underlying structure, then we would expect that
younger children would also have difficulty with concrete instantiations. The
ability to inhibit irrelevant information depends on components of executive
function that improve through the course of development (Diamond, 2006).
Therefore, we would expect a transfer advantage for generic instantiations
over concrete instantiations for younger, preadolescent children as well.
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Even so, as Blair and Schwartz discuss in Chapter 4 of this volume, edu-
cational learning activities often involve an integration of symbolic mathe-
matics and concrete examples. As they illustrate, it is possible to design
activities for some concepts in which students can benefit from interacting
with concrete instantiations. Further research is needed into the benefits and
costs of concrete material for learning and transfer of abstract concepts.

For pedagogical purposes, the possible advantages of choosing concrete
learning material over more generic material need to be weighed carefully
against the disadvantages, especially for adolescents and young adults who
must acquire abstract concepts. In particular, two important questions should
be addressed. First, what is the goal of the educational material at hand? If the
goal is to learn a single domain, some concrete contextualization may not be
a big obstacle. If the goal is to acquire knowledge that can be applied to a vari-
ety of superficially dissimilar situations, then the results of our studies suggest
that generic material has a clear advantage. Second, what are the possible
options for the learning material? In other words, concrete compared to what?
For example, story problems about the acceleration of a thrown baseball are
more concrete than analogous, strictly symbolic problems, but less concrete
than actually measuring the acceleration of a real ball.

If the goal of learning is to acquire knowledge that can be broadly trans-
ferred, then generic instantiations are powerful. For mathematical concepts,
an important aim of education is such broad transfer. Mathematics is ex-
pected to be successfully applied to many real-world situations. Some of these
situations may be foreseeable, such as planning personal finances, and so it is
reasonable to include such concrete instantiations in the course of formal
learning. However, the manner in which mathematics can be applied to less
understood situations is not necessarily foreseeable. For example, this is the
challenge faced by many scientists as they venture into previously unexplored
areas: to recognize consistent relational structure among elements and to
transfer structural knowledge from a known analogous domain or model those
situations with mathematical expressions. Those faced with the challenge of
understanding the structure of unfamiliar domains may be well equipped by
having acquired mathematical knowledge in adolescence and young adult-
hood through generic instantiations.
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