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Abstract

Background: There is anecdotal evidence that many elementary teachers integrate mathematics lessons and art
activities by having students first make colorful, rich material that is subsequently used in an instructional activity.
However, it is unclear whether such activities effectively promote learning and transfer of mathematical concepts.
The goal of the present research was to examine the use and effectiveness of such “math-and-art” activities on
children’s ability to acquire basic fraction knowledge. We report the results of a survey of practicing elementary
school teachers in the United States, their use of activities involving physical material, and the resources they use
for ideas to supplement the standard curriculum. Two experiments examined first-grade students’ learning, transfer,
and recognition of fraction knowledge from rich, contextualized material versus simple, generic material.

Results: The survey results confirm that many U.S. teachers use math-and-art activities and are often inspired by
informal sources, such as Pinterest and YouTube. Experiment 1 examined the effectiveness of colorful,
contextualized student-constructed material (paper pizzas) versus simple, pre-made material (monochromatic paper
circles) in an instructional activity on fractions. Students who used the pre-made circles scored higher than those
who used the student-made pizzas on pre-instruction tests of basic fraction knowledge, immediate tests of
learning, and delayed tests of transfer. Experiment 2 tested students’ ability to spontaneously write fractions to
describe proportions of pizzas and circles. Students who answered generic circle questions first were markedly
more accurate than those who answered pizza questions first.

Conclusions: These findings suggest that rich, contextualized representations, including those made by the
student, can hinder students’ learning and transfer of mathematical concepts. We are not suggesting that teachers
never integrate mathematics and colorful, contextualized material, and activities. We do suggest that elementary
students’ mathematics learning can benefit when initial instruction involves simple, generic, pre-made material and
opportunities for students to make and use colorful, contextualized representations come later.
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Introduction
Mathematics is an important part of kindergarten
through high school curriculum. In the United States,
there are content standards, such as the Common Core
Curriculum (National Governors Association Center for
Best Practices, Council of Chief State School Officers,
2010) and specific state standards (e.g., Ohio’s Learning

Standards for Mathematics, Ohio Department of Educa-
tion, 2017) that specify exactly what content knowledge
students should acquire at each grade level. However,
there are no explicit guidelines for how this information
is taught. While school systems choose specific text-
books and curriculum, the choices of actual instructional
material and activities are often left to the intuition of
teachers. Therefore, it is important to examine the ef-
fectiveness of material and activities that teachers use,
but may not be recommended by formal sources such as
official curriculum or educational research journals.
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There is anecdotal evidence that many elementary
school teachers incorporate activities, such as art activ-
ities, into mathematics lessons perhaps to increase en-
gagement. One particular practice is to have students
make representations of mathematical concepts out of
everyday material and then use those representations in
an instructional activity. For example, students can make
colorful geometric quilts, partially filled egg cartons, or
proportions of paper pizzas to represent fractions (e.g.,
Hargrove, n.d.; NCTM, n.d.). A Google search for the
keywords “math”, “art”, “activities” (using a logical “and”)
yields approximately 156 million results. Including the
word “pizza” yields more than 9 million results. These
include many vivid images of elaborate projects. The use
of such “math-and-art” activities appears to be wide-
spread. However, few studies have explicitly examined
the effectiveness of such activities for mathematics in-
struction. Moreover, we found no strong formal recom-
mendations from groups such as the National Council of
Teachers of Mathematics (NCTM) to use such activities.
At the same time, there is a plethora of suggestions of
ways to incorporate art, crafts, and everyday objects into
mathematics instruction from less formal online re-
sources such as social media and blogs.
The goal of the present research was to examine the

use and effectiveness of such math-and-art activities on
children’s ability to acquire basic fraction knowledge. By
“math-and-art activity”, we mean specifically the incorp-
oration of an art activity into a mathematics lesson by
having students first make a representation that will
then be used for an instructional activity. To investigate
the anecdotal evidence that teachers use math-and-art
activities in their classrooms and to better understand
what resources they use for ideas, we surveyed practicing
elementary school teachers in the United States. In Ex-
periment 1, we tested the effectiveness of material that
students made in a math-and-art activity compared to
simple pre-made material. Experiment 2 examined the
effect of different representations on students’ ability to
spontaneously label proportions with fractions. First, we
discuss evidence that may motivate the use of such ac-
tivities as well as implications for successful acquisition
of mathematical knowledge.

Possible benefits of math-and-art activities
Intuitively, it may seem that incorporating art activities,
such as making representations of mathematics from
everyday objects, into mathematics lessons may make
mathematics seem more fun and hence increase student
engagement. In addition, these activities can provide stu-
dents with physical material to manipulate for instruc-
tion and potentially provide a familiar context such as
sharing food. There is evidence that both physical

material and familiar contexts can be beneficial for
mathematics learning.
Instructional activities involving physical manipula-

tives, such as base-10 blocks and physical number lines,
have been shown to be effective in teaching basic num-
ber properties (e.g., Fuson, 1986; Fuson & Briars, 1990;
Siegler & Ramani, 2009; Tsang, Blair, Bofferding, &
Schwartz, 2015; Wearne & Hiebert, 1988). The use of
physical manipulatives can benefit the acquisition of
other aspects of mathematics. For example, one study
demonstrated that children were more accurate solving
equivalence problems of the form a + b = c+__ when pre-
sented with quantities of wooden blocks than when pre-
sented with standard mathematical symbols and, in
addition, experience solving equivalence problems with
these manipulatives led to improvements in solving sym-
bolic equivalence problems (Sherman & Bisanz, 2009;
see also Manches & O’Malley, 2016). Such physical in-
stantiations of mathematics may be beneficial for com-
municating some mathematical concepts because this
material often links mathematical properties with per-
ceptual properties of the objects. For example, number
magnitudes are correlated with the physical size of base-
10 blocks in which the size of a 10 block is ten times
that of a unit block and the size of a 100 block is 10
times that of a 10 block. Physical material may also have
an advantage for children over strictly symbolic repre-
sentations by reducing demands on working memory
(Zhang & Norman, 1995). For example, for young chil-
dren, comparing the magnitude of numbers using phys-
ical material resembling “||” and “|||” does not require
remembering the meaning of symbols, whereas compar-
ing strictly symbolic representations, such as “2” and “3”,
does. In addition to providing perceptual information
and reducing working memory load, the process of
interacting with manipulatives may itself promote learn-
ing. For example, elementary students who interacted
with physical material demonstrated better knowledge of
fractions than those who only observed the physical ma-
terial (Martin & Schwartz, 2005).
While there is evidence that manipulatives can be

effective for teaching mathematical concepts, many
researchers have pointed out that they are not always ef-
fective (e.g. Ball, 1992; Kamii, Lewis, & Kirkland, 2001;
Sowell, 1989). Successful learning from physical material
requires the learner to recognize that the physical mater-
ial has a dual nature; it is an object in its own right and
also a symbol for the mathematics it is intended to rep-
resent (i.e., dual representation, DeLoache, 1995, 2000;
Uttal, Schreiber, & DeLoache, 1995). It may be that
some physical material is particularly difficult for stu-
dents to link with the mathematics (Uttal, Scudder, &
DeLoache, 1997; Uttal, O’Doherty, Newland, Hand, &
DeLoache, 2009).
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It is also possible that making or using familiar objects,
such as pizzas or candies, in a classroom activity may
suggest a familiar context that can facilitate learning (e.g.,
Mack, 1990). Support for teaching through familiar con-
texts often stems from theories of situated cognition and
situated learning which posit that much of knowledge, in-
cluding mathematical knowledge, is grounded in real-life
experiences and therefore tapping these experiences can
promote learning (e.g., Lave & Wenger, 1991; Greeno,
1989; Greeno, Smith, & Moore, 1992). Arguments in favor
of situated cognition generally focus on evidence that
many abilities, such as mathematical abilities, do not ne-
cessarily coexist in formal and informal settings and that
people often reason more accurately in familiar settings
than in decontextualized abstract contexts (e.g., DeFranco
& Curcio, 1997; Greeno, 1989; Guberman, 1996; Lave,
1988; Resnick, 1987; Saxe, 1988). A well-known example
is that of Brazilian street children who could perform
complex mental arithmetic in street contexts but were
unable to solve analogous problems in school contexts
(Carraher, Carraher, & Schliemann, 1985; Guberman,
1996; Saxe, 1988). Similarly, children as well as adults
often accurately solve problems when presented through a
familiar context by using informal strategies. For example,
prior to being formally introduced to the concepts of
division or fractions, young children can solve problems
involving equal sharing of a number of items between a
number of people (Frydman & Bryant, 1988; Squire &
Bryant, 2002). Additionally, high school and college stu-
dents are often more successful in solving simple algebra
problems when presented as story problems than when
presented as symbolic expressions (Koedinger & Nathan,
2004; Koedinger, Alibali, & Nathan, 2008).

Successful acquisition of mathematical knowledge
As discussed, there is evidence that both children and
adults are often better problem solvers in familiar real-
world domains than in decontextualized abstract
domains (although this is not always the case, see Hick-
endorff, 2013; Koedinger, et al., 2008). However, success-
ful acquisition of mathematical knowledge requires not
only an ability to problem solve within a familiar
context, but also the ability to apply mathematical know-
ledge to novel situations including symbolic representa-
tions and unfamiliar real-world situations. Integrating
mathematics instruction with an activity of making the
physical instructional material may hinder acquisition of
the mathematical knowledge because the student-made
material (e.g., fractions as proportions of paper pizzas)
can communicate extraneous information that simple
generic material (e.g., fractions as proportions of circles)
does not (see Kaminski & Sloutsky, 2011; Kaminski,
Sloutsky, Heckler, 2013). This additional information is
nonessential to the relations that define the concept.

More specifically, such rich student-made material and
simple generic pre-made material differ on three dimen-
sions: perceptually rich versus perceptually sparse, con-
textualized versus decontextualized, and student-made
versus pre-made. There are reasons to believe that the
added information on each of these dimensions can
hinder learning and/or transfer.
Increased perceptual richness adds extraneous superficial

information that is typically more salient than to-be-
learned mathematical relations. This superficial informa-
tion may capture the learner’s attention, diverting it from
the less salient relational information that defines the
mathematics. Instantiating simple mathematical concepts
with perceptually rich, real objects has been shown to hin-
der very young children’s detection of relations (Mix, 1999;
Son, Smith, & Goldstone, 2011). For example, 3- and 4-
year-old children more accurately recognized numerical
equivalence between two sets of simple, generic objects
than between a set of perceptually rich objects and a set of
generic objects (Mix, 1999). Instantiating mathematical
concepts with perceptually rich, familiar objects may not
always hinder initial learning when explicit instruction is
given, however, such instantiations can hinder later trans-
fer of mathematical knowledge to novel instantiations.
Five-year-olds who were taught to recognize equal propor-
tions between sets of contextualized, perceptually rich
objects (i.e., images of colorful cupcakes) were less able to
recognize equal proportions between sets of novel objects
than 5-year-olds who learned this concept with decontex-
tualized, perceptually sparse objects (i.e., images of mono-
chromatic circles) (Kaminski & Sloutsky, 2009). The
inclusion of extraneous perceptual information can also
hinder children’s ability to acquire new mathematical pro-
cedures; kindergarten and first-grade children were less
able to learn to read bar graphs when the bars contained
images of colorful, familiar objects than when the bars
were monochromatic (Kaminski & Sloutsky, 2013). In
some cases, realistic, perceptually rich material can hinder
mathematical problem solving; elementary school children
were less accurate solving word problems involving money
when they were given bills and coins to help them solve
the problems than children who were not given the phys-
ical material (McNeil, Uttal, Jarvin, & Sternberg, 2009). In
addition, increased perceptual richness of symbols has
been shown to hinder both the learning and transfer of a
novel algebraic concept for undergraduate students
(Sloutsky, Kaminski, & Heckler, 2005).
As discussed previously, familiar contexts can often

facilitate problem-solving, but this is not always the case.
Sixth-graders were less accurate on multi-digit division
problems when presented in a contextualized format
than when presented in a strictly numerical format
(Hickendorff, 2013). Similarly, undergraduate students
were less accurate solving complex (as opposed to
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simple) algebra story problems than analogous symbolic
equations (Koedinger, et al., 2008). It has also been
shown that some familiar contexts that facilitated under-
graduate students’ initial learning of a mathematical
concept hindered their subsequent transfer (Kaminski,
Sloutsky, & Heckler, 2008, 2013).
Finally, it is possible that the act of constructing the

material prior to instruction may hinder learning or
transfer. Successful acquisition of mathematics from
physical manipulatives may mean that the learner views
the material not just as an object itself but as a symbol
for the mathematics it is intended to represent (see dual
representation, DeLoache, 1995, 2000; Uttal, et al.,
1995). Allowing preschool children to play with a scale
model of a room for 10 minuntes markedly decreased
their ability to use the model as a symbol for a real room
(DeLoache, 2000). Playing with the model increased
children’s non-symbolic use of the material, which likely
encouraged them to see the material more as an object
itself and not as a symbol for something else (see
DeLoache, 2000; Uttal, 2003). The act of children mak-
ing colorful, contextualized material as an art project is
also non-symbolic with respect to the relevant mathem-
atics. Therefore, the act itself may hinder acquisition of
the mathematics.
Successfully acquiring mathematical knowledge from

perceptually rich, contextualized instantiations may re-
quire sufficient ability to inhibit irrelevant information
and focus attention on the underlying relations that
define the mathematics. For young children, filtering of
irrelevant, potentially distracting information is particu-
larly difficult (Kemler, 1982; Shepp & Swartz, 1976;
Smith & Kemler, 1978, see also Hanania & Smith, 2010),
but improves substantially with age (Davidson, Amso,
Anderson, & Diamond, 2006). For example, when 6- and
9-year-olds were instructed to sort items according to
shape, with color being an irrelevant dimension, 6-year-
olds, but not 9-year-olds, were slower when color varied
independently of shape than when color co-varied with
shape or did not vary at all (Shepp & Swartz, 1976).
Given these developmental changes, it is possible that

elementary school children have sufficiently developed
inhibitory and attentional control to learn mathematics
from rich, contextualized material such as that made in
an art activity. Moreover, such material may be more
interesting and engaging than bland, decontextualized
material and as a result have an advantage over generic
material. On the other hand, while the negative effects
of perceptual richness and contextualization of simple
concepts such as numerical equivalence, shape
categorization, and simple spatial relations attenuate
with development (see also DeLoache, 1995, 2000), per-
ceptually rich, contextualized representations of more
advanced mathematical concepts can hinder even adults’

ability to acquire mathematical knowledge (Kaminski,
et al. 2008, 2013, Sloutsky, et al., 2005; see Goldstone &
Sakamoto, 2003 and Son & Goldstone, 2009 for similar
findings). Adults may fail to recognize common relations
between advanced mathematical systems because they
are much more complex than simple mathematical
concepts, such as those based on cardinality. Increased
relational complexity is known to hinder relational
reasoning (Andrews & Halford, 2002; Halford, 1993;
Halford, Andrews, Dalton, Boag & Zielinski, 2002). For
example, children are less likely to reason relationally
about ternary relations than about less complex binary
relations (Richland, Morrison, & Holyoak, 2006). There-
fore, while children’s ability to filter irrelevant informa-
tion improves by elementary school, they are acquiring
increasingly complex mathematical concepts such as
multiplication, division, and fractions. Reasoning about
new and complex mathematical relations instantiated
with perceptually rich, contextualized, student-made
material, as opposed to perceptually sparse, decontextua-
lized, pre-made material, may make it more difficult to
inhibit the superficial information and attend to the less
salient mathematical relations.

The present study
The present research examined the use and effectiveness
of math-and-art activities in which students make repre-
sentations of mathematics that are subsequently used in
an instructional task. First, we present the results of a
survey of practicing teachers in the United States and
their use of activities for classroom instruction, their
beliefs in the effectiveness of various activities, and the
resources they use for ideas to supplement the standard
curriculum. While many types of instruction involve
activity, we are using the term “activity” to refer to those
that involve students using physical material and ma-
nipulating the material to represent mathematics. The
goal of Experiment 1 was to examine the effectiveness of
a math-and-art activity for teaching basic fraction know-
ledge. Such an activity is effective only to the extent that
the material made by the students effectively promotes
initial learning and subsequent transfer of the relevant
mathematics. Therefore, we examined the effectiveness
of the material by comparing learning and transfer from
student-made representations of fractions (proportions
of paper pizzas) versus simple pre-made representations
of fractions (sectors of paper circles). The goal of Experi-
ment 2 was to examine how the visual representations
themselves, without constructing them, affect students’
spontaneous ability to label proportions with fractions.
We chose to examine children’s acquisition of fraction

knowledge for two reasons. First, the concept of frac-
tions is a prerequisite for other mathematical concepts,
including probability, proportional reasoning, algebra,
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and many higher-order concepts. There is evidence that
knowledge of fractions in elementary school is predictive
of acquisition of algebraic knowledge in middle school
and general mathematics achievement in high school
(Bailey, Hoard, Nugent, & Geary, 2012; Booth & Newton,
2012; Siegler, Duncan, Davis-Kean, Duckworth, Claessens,
Engel, Susperreguy, & Chen, 2012). Therefore, successful
acquisition of fraction knowledge is crucial for future suc-
cess in mathematics. Second, young children enter school
with informal knowledge of equal sharing and propor-
tions; they are typically successful on simple proportional
reasoning tasks involving familiar real-world contexts
(Mack, 2001; Mix, Levine, & Huttenlocher, 1999; Singer-
Freeman & Goswami, 2001; Spinillo & Bryant, 1991,
1999). However, difficulties arise for older children, with
fraction tasks involving standard mathematical notation.
Children often make errors on magnitude comparisons,
estimations, and arithmetic (Hiebert, 1992; Hiebert &
Wearne, 1986; Kieran, 1992; Kouba, Carpenter, &
Swafford, 1989; Kouba, Zawojewski, & Strutchens, 1997).
For example, when judging which of two fractions is larger
in magnitude, children frequently base their responses on
the largest integer present (e.g., Alibali & Sidney,
2015; Ni & Zhou, 2005; Stafylidou & Vosniadou,
2004). If shown 1/2 and 1/3, children often respond
that 1/3 is larger because 3 is larger than 2.
Given that the perceptual richness, contextualization,

and non-symbolic use of material each can communicate
extraneous information, that fractions are a difficult con-
cept for elementary school children, and that attentional
focus is not fully mature at this age, we hypothesized
that material made by students in a math-and-art activ-
ity will be less effective for initial learning and subse-
quent transfer of basic fraction knowledge than simple,
pre-made material. Experiment 1 tested this hypothesis.
Children who had recently completed first grade partici-
pated in an instructional activity on basic fractions. Half
of the participants made their material out of construc-
tion paper and the other half used simple, pre-made ma-
terial. Another goal of this experiment was to examine
student learning and transfer in a controlled experimen-
tal situation that is similar to a classroom setting. To do
so, our participants attended a two-day “learning camp”
for 3.5 hours per day where they engaged in different ac-
tivities. The activities were primarily mathematical with
group instruction.
In addition to predicting that the material made in the

math-and-art activity will hinder explicit learning and
transfer of mathematics, we also expected that the per-
ceptually rich, contextualized representations themselves
(in absence of making them) can divert attention from
previously learned mathematical relations. Therefore, we
hypothesized that perceptually rich, contextualized rep-
resentations will hinder children’s spontaneous ability to

recognize previously acquired fraction knowledge in
comparison to generic, decontextualized material.
Experiment 2 tested this hypothesis. Children who had
prior instruction on basic fractions in their regular class-
rooms were shown perceptually rich, contextualized
representations or generic representations (i.e., propor-
tions of pizzas and circles, similar to those used in
Experiment 1) and asked to write the fractions that
describe the proportions shown.

Survey
Method
Participants
Participants were 413 practicing elementary school
teachers in the United States who teach mathematics in
any grade from kindergarten through grade 4. To recruit
participants, a list of 1400 randomly selected public and
private schools in the United States was generated from
school lists retrieved from the National Center for Edu-
cation Statistics, U.S. Department of Education (down-
loaded from https://nces.ed.gov/programs/edge). The list
was narrowed to a total of 691 schools (561 public,130
private) to include only elementary schools for which
teachers’ email addresses were available on the school
website. A total of 11,666 teachers were sent email mes-
sages. Participants were teachers who responded, indi-
cated that they teach mathematics, and completed at
least 80% of the survey.

Materials
The survey consisted of 18 questions. Questions 1 and 2
asked participants what type of resources they have used,
would consider using, or would not use to obtain ideas
for instructional activities. Question 1 presented a list of
various categories of information resources including
hardcopy journals, professional meetings, and online re-
sources of any type (see Table 1). Question 2 presented
a list of specific types of online resources (see Table 1).
Questions 3–6 assessed participants’ beliefs about stu-
dent engagement and their use of activities in math les-
sons. Specifically, they were asked to indicate the extent
to which they agree with the following statements on a
scale from 1 (strongly disagree) to 5 (strongly agree).

3. It is difficult to keep children engaged in
mathematics lessons.
4. Incorporating activities into math lessons can
increase students’ engagement in math learning.
5. Incorporating activities into math lessons can
increase students’ math learning outcomes.
6. On a scale from 1 (not at all) to 5 (extremely), how
challenging do you feel it is to promote children’s
interest in learning mathematics?
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Questions 7 and 8 asked participants how often they
incorporate activities into their mathematics lessons and
when using activities, what percent of time are they in-
spired by material or resources other than the school-
designated curriculum.
Each of the questions, 9–18 presented a description of

a particular activity involving fractions along with a
photograph of the associated representation of fractions
(see Table 2). The representations included an area
model (i.e., circle), number line, and a tape diagram (i.e.,
paper strips); these are the only visual fraction models
that are explicitly described in the Common Core Stan-
dards (National Governors Association Center for Best
Practices, Council of Chief State School Officers, 2010).
The other seven representations involved everyday ob-
jects or student-constructed material, such as paper
pizzas, kites, and quilts. Note that the circle and pizza
activities are short descriptions of the activities used in
Experiment 1. Participants were asked if they have used
a similar activity or would consider using the activity in
the future. They were also asked to rate the effectiveness
of the activity. Participants were told, “Each description
is of an activity that represents fractions in a particular
manner. Specific instruction on fractions would follow
and/or be incorporated into the activity. Note: if frac-
tions are not part of the grade level you teach, please re-
spond as though you were teaching that grade level and
indicate what you would think is appropriate”.

Finally, the respondents were asked whether they teach
mathematics in their classrooms, the number of years
they have been teaching, the state and type of commu-
nity (urban, suburban, small town, or rural) in which
their school is located.

Procedure
Teachers were contacted via email and asked to
complete an anonymous online survey about their use of
activities to supplement mathematics lessons and what
resources they use for ideas for such activities. The
survey was administered via Qualtrics (Qualtrics, LLC,
Provo, Utah, USA). Questions 9–18 were presented in
random order.

Results
The mean portion of the survey completed by partici-
pants was 99% (SD = 2%). The mean number of years
teaching was 14.9 (SD = 9.7). As indicated by teacher re-
sponses, 120 participants were from the Midwest, 59
were from the Northeast, 149 were from the South, and
85 were from the West. Eighty-eight respondents were
from urban areas; 153 were from suburban areas; 102
were from small towns; 70 were from rural areas. Fifty-
four were from private schools; 359 were from public
schools. Seventy participants were kindergarten teachers;
191 taught first or second grade; 152 taught third or
fourth grade. Except for the exceptions noted below,

Table 1 Percentage of teachers responding to their use of different types of resources

Have used Have not used, but would consider using Would not use

Discussions with colleagues 98% 2% −

Online resources 96% 4% *

Professional development meetings 92% 8% *

Retail stores 81% 15% 4%

Professional conferences 75% 24% 1%

Hard copy journals 47% 40% 13%

Specific online resources

Teachers Pay Teachers 95% 4% 1%

Pinterest 85% 10% 5%

YouTube 80% 15% 5%

Blogs 51% 35% 14%

Facebook 40% 25% 35%

Online journals NCTM 37% 57% 6%

Online education journals not NCTM 32% 57% 11%

Instagram 25% 35% 40%

Twitter 16% 36% 48%

Reddit 3% 50% 47%

Periscope 2% 58% 40%

Note: Percentages are rounded to the nearest ones place
*denotes ≤ 0.5%

Kaminski and Sloutsky International Journal of STEM Education             (2020) 7:6 Page 6 of 23



differences in responses across geographic region of the
United States (Midwest, Northeastern, South, West),
community type (urban, suburban, small town, rural),
public or private school, and grade level were either in-
significant, ps > .10, or small (i.e., differences < 4% or
effect size ηp

2 < 0.04). Results were combined for all par-
ticipants across geographic region, community type,
school type, and grade level.
Overall, the respondents neither strongly agreed nor

disagreed that it is challenging to promote children’s
interest in learning mathematics (M = 2.61, SD = 0.92
on a scale from 1, strongly disagree, to 5, strongly agree).
Teachers neither strongly agreed nor disagreed that it is
difficult to keep children engaged in a mathematics
lesson (M = 2.73, SD = 1.01). Teachers did strongly
agreed that incorporating activities into math lessons can
increase students’ engagement in math learning (M =
4.52, SD = 0.93) and increase students’ math learning out-
comes (M = 4.44, SD = 0.94). With respect to the
frequency of activities, 78% of respondents (93% kinder-
garten, 73% grades 1–2, 77% grades 3–4) indicated that
they incorporate activities into math lessons one or more
times per week; 17% (4% kindergarten, 22% grades 1–2,
16% grades 3–4) indicated that they do so one to four
times per month; 3% said they use activities five to ten
times per year; 2% said they use activities one to five times
per year. Less than 1% indicated never incorporating

activities into mathematics lessons. The difference in fre-
quency of activity use across grade levels was significant,
χ2 (8, N = 413) > 17.7, p < 0.03. There was a small positive
correlation between frequency of activity use and the be-
lief that activities increase learning outcomes, r = 0.12, p <
0.02, n = 413. There were small negative correlations be-
tween frequency of activity use and the belief that it is
challenging to promote students’ interest in mathematics
learning, r = −0.10, p < 0.05, n = 413, and the belief that it
is difficult to keep children engaged in mathematics les-
sons, r = −0.21, p < .001, n = 412. When incorporating ac-
tivities into math lessons, teachers responded that their
choices of activities are inspired by material or resources
other than the school-designated curriculum on average
68% of the time (M = 68.2%, SD = 26.0%).
Table 1 presents the data on the use of specific re-

sources and the percentage of respondents who indi-
cated that they have used, would use, or would not use
them. All of the teachers responded that they use
resources other than the designated curriculum. Ninety-
six percent indicated that they use online resources.
Surprisingly, a minority of the teachers said they use
formal online educational resources (i.e., 37% NCTM
material, 32% non-NCTM educational material). In con-
trast, 85% said they use Pinterest and 80% said they use
YouTube. The most popular online resource, used by
95% of respondents, was Teachers Pay Teachers, which

Table 2 Teacher use and mean ratings of the effectiveness of various fraction activities

Percentage of respondents Mean rating of
effectiveness
(1: not at all–5:
extremely)

Activity Description Have used Would use
in the future

Candies Have students bring in two chocolate bars. Identify fractions, such as 1/2, 1/4, 1/8, as
proportions of the candy bars.

60% 90% 3.95 (.84)

Circles Have students use circles cut into equally sized sectors to represent fractions such
as 1/2, 1/4, 1/8.

78% 96% 3.74 (.86)

Cookies Have students make sets of cookies (either real or paper). Construct sets of cookies
with and without chocolate chips to represent fractions such as 1/2, 1/4, 1/8.

56% 89% 3.96 (.88)

Egg Carton Have students bring in empty egg cartons. Fill egg cartons with different numbers
of plastic eggs to represent fractions such as 1/2, 1/4, 1/12.

21% 84% 3.68 (.90)

Kite Have students make a kite of different colored sections to represent a fraction.
Represent common fractions, such as 1/2, 1/4, 1/8, through kites made by
different students.

33% 84% 3.57 (.89)

Number Line Have students make a number line to represent fractions such as 1/2, 1/4, 1/8. 70% 87% 3.30 (.99)

Paper strips Have students cut strips of paper. Fold the strips into different proportions to
represent fractions such as 1/2, 1/4, 1/8.

74% 95% 3.85 (.85)

Pattern blocks Have students explore a set of pattern blocks and identify fractions, such
as 1/2, 1/4, 1/8, as the ratio of a smaller shape to a larger shape.

70% 94% 3.78 (.88)

Pizzas Have students make pizzas out of paper. Cut the pizzas into equally sized
slices to represent fractions such as 1/2, 1/4, 1/8.

67% 93% 3.86 (.82)

Quilts Have students make paper quilts by coloring (or pasting) equal-sized geometric
parts of a square. Identify the fraction (such as 1/2, 1/4, 1/8) which describes the
proportion of each color or pattern in a specific square.

23% 85% 3.61 (.90)

Note: Standard deviations appear in parentheses
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is a website that provides free and paid material created
by teachers that other teachers can download.1

Table 2 presents the percentage of teachers who
responded that they have used or would use particular
activities and their mean ratings of the effectiveness of
each. The majority of respondents reported having used
candies, circles, cookies, paper strips, pattern blocks, pizzas,
and the number line. The most commonly used represen-
tation was circles, which was used by more teachers than
all the other representations (McNemara χ2 s > 6.89, ps <
0.05, adjusted for multiple comparisons) except paper
strips, McNemara χ2 (1, N = 410) = 2.39, p = 0.12. The sur-
vey results show that teachers tend to use number lines
and paper strips more than most of the representations in-
volving real-world objects (McNemara χ2 s > 12.2, ps <
0.01 compared to the use of candies, cookies, egg cartons,
kites, quilts, and adjusted for multiple comparisons).
However, the percentage of teachers who have used

pizzas was equivalent to the percentages who have used
the number line (McNemara χ2 (1, N = 410) = 1.01, p =
0.32). Teachers also reported that they are more likely to
use pizzas in the future than to use the number line
(McNemara χ2 (1, N = 409) = 6.96, p < 0.01) and equally
likely to use candies, cookies, egg cartons, kites, and
quilts in the future as the number line (McNemara χ2 s
< 1.74, ps > 0.18). With respect to the activities used in
Experiment 1, 96% of teachers responded that they
would use the activity involving circles (the generic
activity), and 93% responded that they would use the
activity involving student-made paper pizza (the math-
and-art activity).
On average, participants rated all of the activities as ef-

fective. With respect to the activities of Experiment 1,
respondents rated the pizza activity as somewhat more
effective than the circle activity, paired sample t(407) =
2.86, p < 0.01. Teachers also rated the number line as
less effective than all of the other representations, paired
sample ts > 4.84, ps < 0.001.
The results of the survey support anecdotal evidence

that many U.S. teachers regularly use activities in math-
ematics instruction, including activities that involve

students making representations of fractions out of
paper and everyday objects. Teachers responded that
they believe these activities effectively promote learning.
The results also reveal that teachers use many informal,
non-research-based resources for inspiration for such
activities. The goal of Experiment 1 was to test the ef-
fectiveness of a math-and-art activity for fraction in-
struction by examining learning and transfer from rich,
student-made material versus simple, pre-made material.

Experiment 1
Participants were taught basic fractions knowledge. Be-
cause prior research has shown that children are more
accurate solving proportion problems involving con-
tinuous representations (e.g., proportions of circles or
pizzas) as opposed to discrete representations (e.g.,
number of dots or candies) (Cramer & Wyberg, 2009;
Singer-Freeman & Goswami, 2001; Spinillo & Bryant,
1991, 1999; see also Mix, et al., 1999), we used continu-
ous representations for instruction. Two between-
subjects conditions (student-made art and pre-made
generic) varied the instructional material. In the
student-made art condition, participants first made
pizzas from construction paper. They then used their
pizzas for the instructional activity. In the pre-made
generic condition, participants made unrelated paper
pictures and then were given monochromatic paper cir-
cles for the instructional activity. Participants were then
tested on their ability to label proportions of novel ob-
jects with fractions, label estimated proportions of con-
tinuous quantities with fractions, and compare fraction
magnitudes.

Method
Participants
Twenty-nine children who just completed first grade were
recruited from public schools in suburbs of a Midwestern
city in the United States (18 girls and 11 boys, M = 7.31
years, SD = 0.35 year). The majority of participants were
Caucasian from middle-class families. Parents gave written
consent for their children to participate in a mathematics
learning research program. Two separate sessions (i.e.,
dates of participation) were held during early summer in
two classrooms of a building located off the university
campus. Ten children participated in the first session; 19
children participated in the second session. Within each
session, participants were randomly assigned to experi-
mental conditions.

Design
Participation involved attendance on two 3.5-hour
morning meetings (subsequently referred to as day 1
and day 2). On day 1, participants were given instruction
on fractions. On day 2, which occurred one week after

1There were some notable differences across groups in the proportion
of teachers who indicated that they would not use Facebook,
Instagram, and Twitter. Specifically, more teachers in the West
reported being unwilling to use these resources than elsewhere, χ2 s >
4.78, ps < 0.03 (Facebook: 32% Midwest, 36% Northeast, 30% South,
47% West; Instagram: 35% Midwest, 45% Northeast, 34% South, 54%
West; Twitter: 48% Midwest, 47% Northeast, 43% South, 59% West).
More teachers in the rural communities reported being unwilling to
use Instagram and Twitter than elsewhere, χ2 s > 5.65, ps < 0.02
(Instagram: 35% urban, 35% suburban, 45% small town, 51% rural;
Twitter 40% urban, 43% suburban, 56% small town, 60% rural). Also,
more private school teachers reported being unwilling to use Twitter
than public school teachers (63% and 46% respectively), χ2 (1, N =
397) > 4.84, p < 0.03.
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day 1, they were tested on the topics taught on day 1.
Participants were randomly assigned to one of two
between-subject conditions, student-made art (N = 15)
or pre-made generic (N = 14), which varied the material
they used on day 1. Testing on day 2 was identical across
the two conditions. All instruction, activities, and testing
were presented by an experimenter (i.e., instructor) to
groups of participants.

Materials
The to-be-learned aspects of fraction knowledge were
basic fraction labeling (i.e., label a proportion in a visual
display with a fraction) and fraction magnitude. Exam-
ples of fraction labeling are to label the proportion of
pizza remaining in Fig. 1 and the proportion of the
circle that is shaded in Fig. 1 as 1/4. The presented
fractions had numerators no greater than 10. Partici-
pants were not taught or tested on equivalent fractions
or fractions larger than 1.
Day 1 activities consisted of a pre-instruction test, an

art activity, fraction instruction, a break, and an unre-
lated mathematics activity. Day 2 consisted of a fraction
test and unrelated mathematics activities with an inter-
mittent break. Table 3 presents an outline of the content
and format of assessments given on days 1 and 2.

Day 1: Pre-instruction test The pre-instruction test was
a paper and pen test consisting of five open-ended
fraction-labeling questions (proportions of pizza in the
student-made art condition, proportions of circles in the
pre-made generic condition) and six binary-choice magni-
tude comparison questions. In each condition, the pizzas
or circles were divided into equally sized slices with black
demarcation lines (as shown in Fig. 1). The magnitude
comparison questions were in the same format for both
conditions; participants were asked to circle the larger of
two fractions. For three of six questions, the correct an-
swer was the fraction with the smallest integer present
(e.g., 1/2 and 1/3). The length and extent of the pre-
instruction test were short in comparison to that of the

tests given during and after instruction because there is
evidence that act of answering pre-test questions can
negatively affect transfer (Opfer & Thompson, 2008). We
wanted to minimize any negative effects of pretesting by
administering a minimal pre-instruction test.

Day 1: Pre-instruction art activity The art activity
lasted 30 minutes. In both conditions, participants
made three separate items from pre-cut colored con-
struction paper. In the student-made art condition, par-
ticipants assembled and glued pre-cut pieces of paper
resembling pizza crusts, sauce, cheese, and toppings. In
the pre-made generic condition, participants assembled
and glued pre-cut geometric shapes onto rectangular
paper.

Day 1: Fraction instruction and testing A 45-minute
fraction instructional period followed the art activity.
The instructional period began with explicit instruction
on fractions, followed by an activity using paper pizzas
or circles, depending on the condition. Participants were
given booklets to record their answers to questions.
Explicit instruction presented by the instructor in-

cluded four examples of fractions representing propor-
tions of pizzas in the student-made art condition and
circles in the pre-made generic condition. These exam-
ples were presented on 8.5-in. × 11-in. sheets of paper;
the pizzas/circles were 8 in. in diameter and were
divided into equally sized slices (as shown in Fig. 1).
Afterward, participants were given four multiple-choice
fraction-labeling questions. The response choices in-
cluded: (1) the correct response, (2) correct numerator,
but incorrect denominator, (3) correct denominator, but
incorrect numerator, and (4) incorrect numerator and
incorrect denominator. The order of the answer choices
was counterbalanced across questions.
The instructional activity involved the use of the par-

ticipants’ pizzas (in the student-made art condition) or
circles (in the pre-made generic condition). In each con-
dition, one representation (pizza or circle) was cut into

Fig. 1 Example of material in the student-made art and pre-made generic conditions of Experiment 1
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two halves. Another was cut into four fourths. The third
was cut into eight eighths. Participants were given 14
fraction stickers (two 1/2, four 1/4, and eight 1/8) to first
label proportions of their pizzas or circles. Afterward,
they answered six “how many” questions. The “how
many” questions asked the number of smaller fractions
that would be needed to comprise a larger fraction or
whole. Recognizing that a fraction a/b, where b ≠ 0, is
equal to the sum of fractions of the form 1/b is part of
the standard curriculum (National Governors Associ-
ation Center for Best Practices, Council of Chief State
School Officers, 2010). More details of the instructional
activity appear in the procedure section. Participants
were then given six fraction magnitude comparison
questions in which they were asked to circle the larger
of two fractions. These were the same six questions
asked in the pre-instruction test.

Day 2: Delayed test The second day of participation oc-
curred one week after the first day. Participants were
given a 65-question multiple-choice test (16 fraction la-
beling questions, 13 estimation questions, 32 magnitude
comparison questions, 4 contextualized magnitude com-
parison questions). There were four possible response
choices for the labeling and estimation questions, and
two possible response choices for the magnitude com-
parison questions.
The fraction labeling and estimation questions were

projected onto a screen on the wall using a projector.
Participants had paper booklets with the response
choices for each question, and they circled their re-
sponses in the booklet. Eight of the fraction labeling
questions presented a proportion of an object or collec-
tion of objects and participants needed to choose the
fraction that correctly described the proportion (see left
panel of Fig. 2 for an example). Another eight labeling
questions presented a fraction and participants needed
to choose a picture with a proportion that matched the
fraction (see the right panel of Fig. 2 for an example).
For both types of questions, there were four types of re-
sponses: correct answer, correct numerator/incorrect de-
nominator, correct denominator/incorrect numerator,

and incorrect numerator/incorrect denominator. The
order was counterbalanced across questions.
The estimation questions presented proportions with-

out demarcation lines between the sections; participants
needed to choose the fraction that approximated the
proportion shown. Five estimation questions presented
proportions of pizza. Five questions presented propor-
tions of circles that were blue (see left panel of Fig. 3 for
an example). The five pizza questions were isomorphic
to the five circle questions. Three additional estimation
problems presented partially filled containers (see right
panel of Fig. 3 for an example).
The 32 numerical magnitude comparison questions

were presented on paper. Participants were asked to cir-
cle the larger of two fractions. The contextualized mag-
nitude comparison questions were shown through the
projector and presented short story problems in which
two children had proportions of objects. Participants
were asked to choose the child who had more and cir-
cled their responses in the booklets.

Procedure
The student-made art and pre-made generic conditions
were conducted in separate rooms. Children sat in a
well-spaced arrangement at small tables. Instruction was
given to the entire group of participants, but children
completed the mathematical activities and tests individu-
ally. A second experimenter was present and acted as an
assistant. During the activities, corrective feedback was
given by both experimenters to individual children. All
fraction instruction and feedback were scripted and
completely analogous across the two conditions. The
scripts appeared on either the top or the back of the in-
structional material to remind or prompt the instructor
of the precise language to use.
On day 1, participants first answered the pre-

instruction test questions and then began the art activ-
ity. In the student-made art condition, participants
made three paper pizzas. Afterward, the experimenter
cut them each into equally sized slices and then
returned them to the participant. In the pre-made gen-
eric condition, participants were shown examples of

Table 3 Format of assessments given in Experiment 1, split by mathematical content and the day of participation

Day 1 Day 2

Content Pre-instruction test Test during instruction Delayed test

Labeling Condition-specific Condition-specific Novel contextualized

Magnitude Comparison Numerals only Condition-specific Numerals only and contextualized

“How many” − Condition-specific −

Estimation − − Contextualized and generic

Note: Condition-specific refers to pizzas in the student-made art condition and circles in the pre-made generic condition. Unless denoted condition-specific, the
format of questions was identical across condition
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abstract paintings and then made three different ab-
stract pictures that resembled either real objects or an
arbitrary design.
The art activity was followed by the fraction instruc-

tional period that began with explicit instruction on frac-
tions and then an activity. The instructor first showed
participants four examples of fractions representing pro-
portions and then presented the multiple-choice ques-
tions. Participants circled their responses in their answer
booklet. For each question, after all participants circled
their responses, corrective feedback was given to the
group by the instructor and then to each individual child
by either the instructor or the assistant. Feedback indi-
cated the correct response and explained the relation
between the fraction and the proportion. For example, in
the pre-made generic condition, the instructor or assistant
showed that 1/4 describes the proportion showing one

blue part out of four parts altogether, gesturing and count-
ing each part.
Next, participants were asked to use their pizzas/circles

to represent different fractions. First, they were shown the
fraction 1/4 and asked to consider the pizza/circle that
was cut into four pieces and to remove some of the pieces
to show a proportion that is 1/4. The instructor then dem-
onstrated this with separate physical material and
explained that each single piece can represent 1/4. Partici-
pants then placed stickers showing 1/4 on each of the four
pieces. Assistance was given to each participant individu-
ally to ensure that participants labeled the proportions
correctly. Participants did the analogous task for 1/2 and
1/8 and received assistance.
Afterward, participants answered six “how many”

questions by using their pizzas/circles. The first of these
questions was “how many 1/4s make a whole pizza/

Fig. 2 Examples of fraction labeling questions from the delayed test of Experiment 1

Fig. 3 Examples of estimation questions from the delayed test of Experiment 1
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circle?” The instructor demonstrated with separate ma-
terial that four 1/4 pieces would constitute the entire
pizza/circle. Participants answered the remaining five
questions, which involved 1/8, 1/4, and 1/2 (e.g., “how
many 1/8s make 1/2 of a circle?”), and wrote their re-
sponses in their booklets. Participants were then given
the six fraction magnitude comparison questions. Partic-
ipants could use their fraction representations to help
them answer. For each question, after all participants
had indicated an answer, corrective feedback was given
by the instructor to the group and subsequently to each
individual child. Feedback indicated the correct response
and explained the relation between the fraction and the
proportion. Upon completion of the instructional period,
children were given a 25-minute break, followed by un-
related mathematical tasks.
On day 2, children were randomly divided into the

two classrooms for testing. Participants were first given
paper magnitude comparison questions, followed by
labeling questions, estimation questions, and contextual-
ized magnitude comparison questions that were pro-
jected onto a large wall screen. The experimenter read
the questions one at a time. The response choices ap-
peared on the screen and also in the paper booklets. Par-
ticipants circled their responses in the booklets. After
completion of the testing, children had an extended
break, followed by unrelated activities.

Results
One child in the pre-made generic condition was not
present on the second day and therefore was excluded from
the analysis. An additional child in the pre-made generic
condition was also excluded because the day 2 score on
fraction labeling was more than three standard deviations
from the mean. This child scored only 25% correct on day
2 labeling questions, while the mean of the group was 93%
and the next lowest score in the group was 81%.
Table 4 presents accuracy on assessments, split by in-

structional condition and question content. Scores during
instruction reflect participants’ initial responses prior to
corrective feedback. The following sections present the
analysis of these results. We analyzed the effect of instruc-
tional condition on total scores during instruction on day
1 as a measure of initial learning and total scores on Day 2
as a measure of transfer. Subsequently, we considered the
effect of condition on each type of question. Pre-
instruction labeling scores and pre-instruction magnitude
comparison scores were analyzed separately since labeling
questions were condition-specific while the magnitude
comparison questions were the same in both conditions.

Day 1: Pre-instruction test
There were no differences between conditions in pre-
instruction scores on the magnitude comparison questions,

independent-samples t-test, t(25) = 0.606, p = 0.55. Mean
score in the student-made art condition was 56.7% (SD =
15.2); mean score in the pre-made generic condition was
61.1% (SD = 22.8). In both conditions, mean scores were
not reliably above a chance score of 50%, one-sample, ts <
1.71, ps > 0.11. A score of 50% would also occur if a partici-
pant chose the fraction that had the largest integer. In the
student-made art condition, 53% of participants responded
by choosing the fraction with the largest integer; in the pre-
made generic condition, 58% of participants did so.
While there were no significant differences between

conditions on the magnitude comparison questions,
there were differences on the labeling questions. These
questions were condition-specific. In the student-made
art condition, proportions of pizza remaining were
shown, and in the pre-made generic condition, propor-
tions of circles shaded grey were shown. Participants in
the pre-made generic condition scored higher than those
in the student-made art condition (M = 56.7, SD = 40.8
in the pre-made generic condition and M = 22.7, SD =
34.5 in the student-made art condition), independent-
samples t test, t(25) = 2.34, p < 0.03, Cohen’s d = 0.90.
There are two possible explanations for this result. First,
the difference may have stemmed from the format of the
questions. The simple generic format may be more likely
to activate prior fraction knowledge than the contextual-
ized pizza format, leading to higher accuracy in the pre-
made generic condition (a possibility that we explicitly
tested in Experiment 2). Second, the difference may be
due to sampling, resulting in differences in participants
between the conditions. Although participants were ran-
domly assigned to conditions, it is possible that partici-
pants in the pre-made generic condition happened to
have greater prior knowledge of fractions than those in
the student-made art condition which led to higher
scores on the pre-instruction labeling questions.
The following data analysis assumed that participants

in both conditions had equivalent prior knowledge levels
and that the differences in pre-instruction labeling were
the result of the question format. Experiment 2 was a
direct test of the hypothesis that the different question
formats are responsible for different levels of accuracy
on spontaneous fraction labeling.

Day 1: Test during fraction instruction
The total scores during instruction were markedly different
between the two instructional conditions (see Table 4).
The combined scores on labeling, magnitude comparison,
and “how many” questions were submitted to an analysis
of covariance with instructional condition as a fixed factor
and pre-instruction magnitude comparison as a covariate.
Participants in the pre-made generic condition scored
significantly higher than those in the student-made art
condition, F(1, 24) = 9.51, p < 0.01, ηp

2 = 0.28. There was
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no effect of pre-instruction magnitude comparison score,
F(1, 24) = 1.18, p = 0.29. Also note that although pre-
instruction labeling scores differed across condition, an
analysis of covariance with both pre-instruction labeling
scores and magnitude comparison scores also reveals a sig-
nificant effect of condition on the combined learning score,
F(1, 23) = 5.17, p < 0.04, ηp

2 = 0.18, with no effect of pre-
instruction labeling score, F(1, 23) = 1.29, p = 0.27, and
with no effect of pre-instruction magnitude comparison
score, F(1, 23) = 0.03 p = 0.87.
To consider differences in performance on each type

of question, scores on the separate question content
types were analyzed in a multivariate analysis of covari-
ance, MANCOVA, with pre-instruction magnitude com-
parison scores as a covariate. Using a Bonferroni-Holm
correction for multiple comparisons, condition had a
significant effect on the “how many” questions, F(1, 24)
= 6.83, p = 0.015, ηp

2 = 0.22, with participants in the
pre-made generic condition scoring higher than those in
the student-made art condition. Scores on the magni-
tude comparison questions were also higher in the pre-
made generic condition than in the student-made art
condition, F(1, 24) = 4.80, p = 0.038, ηp

2 = 0.17. No sig-
nificant difference between conditions was found for
scores on the labeling questions, F(1, 24) = 0.31, p =
0.59.
In both conditions, scores on the labeling questions

were well above a chance score of 25% correct, t(14) =
11.1, p < 0.001, d = 2.85, t(11) = 12.8, p < 0.001, d = 3.71
for the student-made art and pre-made generic conditions
respectively. Scores on the magnitude comparison ques-
tions were also well above a chance of 50% correct in both
conditions, t(14) = 2.96, p < 0.02, d = 0.76, t(11) = 6.14, p
< 0.001, d = 1.77 for the student-made art and pre-made
generic conditions respectively. Additionally, the magni-
tude comparison questions given during instruction were
the same as those of the pre-instruction test. In terms of
improvement, participants in the pre-made generic condi-
tion had significant gains of 22.2%, t(11) = 4.30, p < 0.002,
d = 1.24, while gains for participants in the student-made

art condition (8.89%) were not reliably different from zero,
t(14) = 1.22, p = 0.24, d = 0.32.

Day 2: Delayed test
Total delayed test scores were also different between
conditions. Participants in the pre-made generic condi-
tion scored higher than those in the student-made art
conditions, ANCOVA, F(1, 24) = 5.27, p < 0.04, ηp

2 =
0.18. Pre-instruction magnitude comparison scores also
accounted for part of the delayed test score, F(1, 24) =
5.85, p < 0.03, ηp

2 = 0.20.
A multivariate analysis, MANCOVA, with pre-

instruction magnitude comparison scores as a covariate
and a Holm-Bonferroni correction, shows a significant
effect of condition on the labeling questions, F(1, 24) =
9.55, p < 0.01, ηp

2 = 0.29. Participants in the pre-made
generic condition scored higher than those in the
student-made art condition. The differences in scores
on the estimation and magnitude comparison questions
were not significant, F(1, 24) = 1.93, p = 0.18 and F(1,
24) = 1.86, p = 0.19 respectively.
Scores on the fraction labeling questions were above

chance (25% correct) in both conditions, t (14) = 6.83, p <
0.001, d = 1.76 and t (11) = 36.4, p < 0.001, d = 10.5 for
the student-made art and pre-made generic conditions re-
spectively. Scores on the estimation questions were also
above chance (25% correct) in both conditions, t (14) =
4.40, p < 0.002, d = 1.13 and t (11) = 6.31, p < 0.001, d =
1.82 for the student-made art and pre-made generic con-
ditions respectively. For the magnitude comparison ques-
tions, scores were significantly above chance in the pre-
made generic condition, t (11) = 2.99, p < 0.02, d = 0.86,
but were not necessarily above chance in the student-
made art condition, t (14) = 1.85, p = .085, d = 0.48.

Discussion
Overall, the results of Experiment 1 suggest that the
math-and-art activity hindered learning and transfer of
fraction knowledge in comparison to the activity with
the simple, generic material. Participants who used the

Table 4 Mean accuracy (percent correct) on assessments in Experiment 1, split by condition and question content

Test during instruction Delayed test

Question Content Student-made art
(n = 15)

Pre-made generic
(n = 12)

Student-made art
(n = 15)

Pre-made generic
(n = 12)

Labeling 83.3 (20.4) 87.5 (16.9) 69.2 (25.1) 92.7 (6.4)b

Magnitude Comparison 65.6 (20.4) 83.3 (18.8)a 57.6 (15.9) 68.1 (20.9)

"How many" 56.7 (31.4) 84.7 (18.1)a − −

Estimation − − 54.9 (26.3) 69.9 (24.6)

Total Score 66.7 (14.7) 84.9 (14.5)b 59.9 (14.7) 74.4 (16.9)a

Note: Standard deviations appear in parentheses.
aSignificant differences between conditions at p < 0.05
bSignificant differences between conditions at p < 0.01
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simple, pre-made material scored higher than those who
used the rich, student-made material on both the test of
learning given during instruction and the delayed test
given one week after instruction. More specifically, the
rich student-made material had different effects on frac-
tion knowledge depending on the level of complexity.
For simpler aspects of fraction knowledge, namely basic
fraction labeling, the student-made material did not hin-
der initial learning in comparison to the generic pre-
made material; day 1 fraction labeling scores were
equivalent in both conditions. However, the student-
made material did hinder transfer one week later. Partic-
ipants in the pre-made generic condition ably trans-
ferred fraction-labeling knowledge to novel material on
day 2, while participants in the student-made art condi-
tion were markedly less able to do so. For more complex
aspects of fraction knowledge related to magnitude and
estimation, the student-made material hindered initial
learning in comparison to the simple, pre-made material;
day 1 scores on magnitude comparison and “how many”
questions were lower in the student-made art condition
than in the pre-made generic condition. However, no
significant differences between conditions on magnitude
and estimation questions were present after a one-week
delay.
While the results of Experiment 1 support our hypoth-

esis, Experiment 1 involved a small number of partici-
pants, and it is possible that a disproportionate number of
participants with high levels of prior fraction knowledge
ended up in the pre-made generic condition compared to
the student-made art condition. This possible difference
in prior knowledge may have led to higher pre-instruction
labeling scores in the pre-made generic condition than in
the student-made art condition. It is also possible that
even though there was an effect of condition on learning
scores when controlling for pre-instruction labeling
scores, potential differences in prior knowledge could re-
sult in higher learning scores and higher delayed transfer
scores in the pre-made generic condition than the
student-made art condition. The goal of Experiment 2 was
to directly test the effect of the perceptually rich, contex-
tualized representation (without the activity of construct-
ing the material) versus the generic representation on
spontaneous fraction labeling. Children with some basic
knowledge of fractions were asked to write fractions to de-
scribe proportions presented in either a perceptually rich,
contextualized format (i.e., proportions of pizzas) or a gen-
eric format (i.e., proportions of circles). We predicted that
the extraneous information in the contextualized material
would distract children from the relevant mathematical
relation between the numerator and denominator that de-
fines the concept of fraction, while the generic material
would allow easier recognition of the relevant relation.
Therefore, we expected children to be more accurate

writing fractions to describe proportions of generic circles
than proportions of contextualized pizzas.

Experiment 2
In this experiment, first-grade students were given an
open-ended test of fraction labeling similar to the pre-
instruction labeling test of Experiment 1. Because we
were interested in the application of prior fractions
knowledge and not the learning of fractions, participants
were students from classrooms in which there had been
some previous instruction on fractions. Unlike Experi-
ment 1, we gave participants no instruction on fractions;
participants were simply shown visual proportions and
asked to write fractions to describe these proportions.

Method
Participants
Fifty first-grade students (25 boys and 25 girls, M = 7.23
years, SD = 0.31 year) were recruited from three public
schools and one private school in the suburbs of a Mid-
western city in the United States. Parents gave written
consent for their children to participate. The majority of
participants were Caucasian from middle-class families.
Of twelve classroom teachers, we initially contacted to
recruit participants, eight had introduced students to
basic fraction notation. Participants were from these
eight classrooms in which there had been some exposure
to fractions. The experiment was conducted in the last
month of the academic year.

Design
There were two between-subject conditions, contextualized-
then-generic and generic-then-contextualized, which speci-
fied the order in which the questions were presented.

Materials
Participants were given a 24-question, paper and pen
test of fraction labeling. Each question presented a pro-
portion and participants’ task was to write down the
fraction that described the proportion. The questions
were broken into four sets of six questions: contextual-
ized labeling, generic labeling, contextualized estimation,
and generic estimation. The contextualized questions
presented proportions of pizza, and the generic ques-
tions presented proportions of circles. The labeling ques-
tions presented pizzas or circles that were divided into
equally sized pieces with demarcation lines. These ques-
tions were in the same format as the questions used for
the pre-instruction labeling test in Experiment 1 (see
Fig. 1). There were no demarcation lines for the estima-
tion questions.
Participants in both conditions answered the same

questions, but in different orders. In the contextualized-
then-generic condition, the question sets were presented
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in the following order: contextualized labeling, generic
labeling, contextualized estimation, and generic estima-
tion. In the generic-then-contextualized condition, the
question sets were presented in this order: generic
labeling, contextualized labeling, generic estimation, and
contextualized estimation. All questions were presented
in two paper booklets. The first booklet presented only
the first set of questions (i.e., contextualized labeling for
the contextualized-then-generic condition and generic
labeling for the generic-then-contextualized condition).
The remaining three sets of questions were presented in
the second booklet.

Procedure
The experiment was conducted in the participants’
classrooms. Within each classroom, participants were
randomly divided into two groups to form the two
between-subjects conditions and then seated at desks.
The experimenter passed out the first set of paper
booklets. The experimenter instructed participants in
the contextualized-then-generic condition to write down
the fraction that describes the proportion of pizza that
is left for each of the questions. In the generic-then-
contextualized condition, participants were instructed
to write down the fraction that describes the proportion
of the circle that is grey for each of the questions.
Participants completed the questions in the booklet at
their own paces. When everyone had answered all the
questions, the experimenter collected the first set of
booklets and then passed out the second set of booklets
and gave instructions to write the fraction that
describes the appropriate proportion, namely the pro-
portion of pizza left or the proportion of the circle that
is grey. Participants answered those questions at their
own paces. When participants completed all the ques-
tions, the experimenter collected the booklets.

Results
Table 5 presents mean accuracy, split by condition and
question type. Note that accuracy in this experiment is
higher than that observed on the pre-instruction test of
Experiment 1; this is because all participants in this
experiment, unlike Experiment 1, were from classrooms
that had some previous instruction on fractions. We
made several between-condition comparisons of partici-
pants’ performance. First, we compared performance on
the first set of questions to consider the effect of format
on spontaneous responding. Participants in the generic-
then-contextualized condition scored significantly higher
than those in the contextualized-then-generic condition
on their initial question set, 78% versus 40% respectively
(see Table 5), independent-samples t test, t(48) = 3.39, p
< 0.002, d = 0.959. This result replicated the difference
in pre-instruction test scores of Experiment 1. In both

experiments, participants who were presented with the
generic questions were markedly more accurate than
participants who were presented with the contextualized
questions. This finding suggests that the generic format
was more likely to prompt spontaneous correct
responses to fraction labeling questions than the contex-
tualized format.
In addition to comparing performance on the initial

question set, we also compared performance on contex-
tualized labeling questions and generic labeling ques-
tions between conditions to investigate the effect of the
order in which questions were answered. Scores were
submitted to a repeated measures ANOVA with condi-
tion as a between-subject factor and question type as a
within-subject factor. Results reveal a significant effect of
condition, F(1, 48) = 7.70, p < 0.01, ηp

2 = 0.14. Partici-
pants in the generic-then-contextualized condition
scored significantly higher than participants in the
contextualized-then-generic condition on both the
contextualized questions and the generic questions (see
Table 5), t(48) = 3.09, p < 0.01, d = 0.87 and t(48) =
2.31, p < 0.03, d = 0.65 respectively. Question type also
had a significant effect on accuracy, F(1, 48) = 6.96, p <
0.02, ηp

2 = 0.13. Participants were more accurate on
generic questions than on contextualized questions. The
interaction between condition and question type was not
significant, F(1, 48) = 2.67, p = 0.109.
To further examine participants’ responses, we

categorized participants by their predominant type of
response on the initial question set and separately on
the second question set. If greater than 50% of a partic-
ipant’s responses on a question set were correct, then
he or she was categorized as correct. Otherwise, a
participant’s responses were placed into one of four
categories: (1) numerator: responses equal to the
numerator of the correct fraction (e.g., response of 1
when 1/4 is correct), (2) opposite: responses equal to
the fraction that describes the opposite proportion (e.g.,

Table 5 Mean accuracy (percent correct) in Experiment 2, split
by condition and question type. Standard deviations appear in
parentheses

Question type Condition

Contextualized-then-generic
(n = 25)

Generic-then-contextualized
(n = 25)

Labeling

Contextual 40.0 (42.2) 75.3 (38.5)a

Generic 51.3 (44.3) 78.0 (36.8)b

Estimation

Contextual 46.0 (42.3) 74.0 (37.6)b

Generic 46.0 (41.2) 71.3 (37.7)b

aSignificant differences between conditions at p < 0.01
bSignificant differences between conditions at p < 0.05
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response of 3/4 when 1/4 is correct) or responses that
were reciprocals of the correct response (e.g., response
of 4/1 when 1/4 is correct), (3) ratio: responses equal to
the ratio of the numerator and the difference of the
denominator and the numerator (e.g., response of 1/3
when 1/4 is correct), and (4) other. Responses in the
“other" category included seemingly random numbers
or equations involving addition or subtraction (e.g., 1 +
3 = 4). A participant’s responses were placed into one
of these four categories if at least 50% of the responses
met the category definition.
Table 6 presents the percentage of participants whose

responses fell into each category for both the initial
question sets (shown in the table under 1st) and second
question sets (shown in the table under 2nd). The
generic-then-contextualized condition had more correct
responders and fewer numerator responders than the
contextualized-then-generic condition. The distribution
of participant responses on the initial sets differed by
condition. An asymmetric log-linear analysis with re-
sponse category as the dependent variable found condi-
tion to be a significant factor, χ2(1, N = 50) > 11.6, p <
0.03. The differences were significant even if we include
participants in the “opposite” response category (who ar-
guably had some knowledge of fractions, but did not re-
spond accurately) in the “correct” category, χ2(1, N = 50)
> 8.78, p < 0.04. Similar analysis for responses on the
second set of questions found no significant differences
between conditions, χ2(1, N = 50) = 7.02, p = 0.135.
In addition to differences between conditions on the

fraction labeling questions, there were striking differences
on the estimation questions (see Table 5), with partici-
pants in the generic-then-contextualized condition scoring
higher than those in the contextualized-then-generic con-
dition. A repeated measures ANOVA with condition as a
between-subjects variable and question type as a within-
subject variable revealed a significant effect of condition,
F(1, 48) = 5.88, p < 0.02, ηp

2 = 0.11. Participants in the
generic-then-contextualized condition scored higher than
participants in the contextualized-then-generic condition
on both the contextualized questions and the generic
questions, t(48) = 2.47, p < 0.02, d = 0.70 and t(48) = 2.27,
p < 0.03, d = 0.64 respectively (see Table 5). No significant
differences in accuracy were found between question

types, F(1, 48) = 0.324, p = 0.572. There was no significant
interaction between condition and question type, F(1, 48)
= 0.324, p = 0.572.

Discussion
The results of Experiment 2 demonstrate that partici-
pants were more likely to write correct fractions when
shown proportions of circles than when shown propor-
tions of pizzas. The percentages in Table 6 also show
that participants in the contextualized-then-generic were
five times more likely than those in the generic-then-
contextualized condition to focus only on the number of
slices present/shaded (i.e., the numerator) instead of the
proportion of those slices out of the entire group (see
Table 6 under numerator).
Moreover, exposure to the initial question format influ-

enced participants’ performance on subsequent questions;
those who initially answered the generic circle questions
were more likely to give correct responses to subsequent
contextualized pizza questions than participants who
initially answered the pizza questions. In addition, partici-
pants who initially answered the generic questions were
more accurate on the estimation questions for which they
needed to determine a fraction that would best describe a
proportion presented without demarcation lines that pre-
cisely indicate the proportion. For participants who first
answered the contextualized questions, the exposure to
these questions appears to have hindered their accuracy
not only on those questions but also on subsequent
generic labeling questions and estimation questions.

General discussion
Teaching young children mathematics can often be
challenging in part because effective instruction needs
to communicate the relational structure of the math-
ematics while maintaining children’s attention on the
learning task. One approach to this challenge is to
engage students in instructional activities with phys-
ical material. The results of our survey indicate that
many teachers in the United States believe that in-
corporating such activities into math lessons can in-
crease students’ engagement and math learning
outcomes. The survey results also indicate that many

Table 6 Percentage of participants in Experiment 2 in each response category on the initial and second question sets

Percentage of participants in response categories on the first and second fraction labeling question sets

Correct Numerator Opposite/reciprocal Ratio Other

Question set: 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Condition: n

Context-generic 25 36 48 20 20 12 8 8 8 24 16

Generic-context 25 80 76 4 4 4 8 0 0 12 12
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teachers regularly use instructional activities involving
a variety of different materials. These include activ-
ities that integrate mathematics with art by having
students make representations that are then used for
instruction. Survey respondents indicated that their
choices of activities and materials are more often in-
spired by informal online resources, such as Pinterest
and YouTube, than research-based resources or their
school-designated curriculum.
The survey results also show that most teachers use the

representations that are explicitly recommended in the
standard curriculum (National Governors Association
Center for Best Practices, Council of Chief State School
Officers, 2010); these are number lines, area models, and
strip diagrams. However, teachers stated that they are
more likely to use pizzas and other contextualized repre-
sentations of fractions in the future than to use the num-
ber line. They rated the number line as the least effective
representation of those presented in the survey. This is
surprising because the number line is a standard mathem-
atical representation and instruction with the number line
can improve whole number magnitude and arithmetic
knowledge (e.g., Booth & Siegler, 2008) as well as basic
fraction knowledge (Fazio, Kennedy, & Siegler, 2016;
Hamdan & Gunderson, 2017). Knowledge of the number
line has been shown to be predictive of mathematics
achievement (Booth & Siegler, 2006; Siegler & Booth,
2004; De Smedt, Verschaffel, & Ghesquiere, 2009; Geary,
2011; Sasanguie, Van den Bussche,& Reynvoet, 2012). First
graders’ accuracy on a number line task predicts their
mathematics achievement through 5th grade, even after
controlling for intelligence, working memory, processing
speed and other early numerical skills (Geary, 2011).
Given these findings, it is concerning that some teachers
may be less likely to use the number line for instruction
than many non-standard, contextualized representations.
While the use of instructional activities involving con-

textualized representations, such as student-made paper
pizzas, appears to be widespread, there has been no clear
evidence that such activities effectively or efficiently pro-
mote mathematics learning and transfer. Intuitively, it
may seem that such activities can promote learning
because they are engaging. However, with respect to
effective instructional material, the intuitions of even
experienced teachers do not always align with research
findings (Dorward, 2002).
Experiment 1 investigated the effectiveness of such an

activity by examining learning and transfer from
colorful, contextualized student-made material versus
simple generic pre-made material. Overall, there was an
advantage for the pre-made material over the student-
made material for both initial learning and subsequent
transfer; this result contradicts responses to our survey
in which teachers rated the pizza activity as slightly more

effective than the circle activity. Specifically, for the sim-
pler concept of basic fraction labeling, there was no
disadvantage with respect to initial learning for the
student-made material compared to the pre-made ma-
terial, but there was a disadvantage for the student-made
material regarding transfer to novel representations after
one week. This result may suggest that for students who
learned with the student-made material, their internal
representation of the newly acquired fraction knowledge
may be tightly bound to the extraneous conceptual and
perceptual information of the colorful contextual mater-
ial. This would allow them to recognize fractions in the
context of the learning material, but make it difficult to
recognize in the absence of the learning material. The
generic pre-made material had less extraneous informa-
tion to overwhelm the internal representation, making
recognition of fractions in novel contexts easier. For the
more complex concepts involving fraction magnitudes,
there was an advantage for the pre-made generic mater-
ial over the student-made material during initial learn-
ing, but this advantage attenuated for delayed transfer.
Magnitude judgments are relationally more complex
than simple fraction labeling because the learner needs
to reason about two fractions simultaneously. The
present results suggest that the effect of the colorful,
contextualized student-made material may interact with
the level of complexity of the to-be-learned concept.
Under conditions of increased relational complexity,
children may not be able to inhibit the irrelevant percep-
tual and contextual information of the student-made
representations thus increasing the difficulty of the
learning task. This possibility is supported by research
demonstrating that developmental improvements in
children’s relational reasoning can be modeled through a
computer simulation by increasing inhibition levels to
simulate maturation of inhibitory control (Morrison,
Doumas, & Richland, 2011); increases in inhibition levels
led to increased relational responses.
The results of Experiment 2 support the hypothesis

that the perceptually rich, contextualized representations
themselves (in absence of constructing them as part of a
math-and-art activity) can hinder children’s ability to
spontaneously recognize and apply mathematical know-
ledge in comparison to decontextualized generic repre-
sentations. Children who had some previous exposure to
fractions in school were markedly more likely to write
correct fractions to describe generic proportions than to
describe perceptually rich, contextualized proportions.
Moreover, children who initially labeled generic propor-
tions were subsequently more accurate labeling the
contextualized proportions than children who labeled
the contextualized proportions first. Participants in the
generic-then-contextualized condition were also more
accurate using fractions to label estimated proportions
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(both generic and contextualized) than participants in
the contextualized-then-generic condition. These find-
ings suggest that the simple, generic format facilitated
the recognition of the relation that defines a fraction
(i.e., a/b, the relation between the numerator and the de-
nominator), while the colorful, contextualized format
was less likely to do so. This possibility is supported by
the analysis of specific participant responses. Participants
in the contextualized-then-generic condition were five
times more likely than those in the generic-then-
contextualized condition to respond by providing the
numerator of a fraction describing the proportion as
opposed to providing an entire fraction (i.e., 20% versus
4%). Participants who responded with the numerator
may have attended only to the number of slices of pizza
remaining or colored sectors of the circle and not to the
total number of pieces. The tendency to focus only on
the number of slices remaining may have been particu-
larly strong for the contextualized questions because the
slices of pizza themselves are perceptually very salient.
The salience of the pizza slices may have captured
participants’ attention, not allowing it to be allocated to
all relevant pieces of information, namely the number
of elements in the specified subset (e.g., number of
slices of pizza remaining), the number of elements in
the entire set (e.g., total number of slices remaining or
missing), as well as the relation between these numbers.
There were also more participants in the contextualized-
then-generic condition than in the generic-then-
contextualized condition who responded incorrectly by
answering with the ratio, the reciprocal fraction, or the
fraction that described the opposite proportion. These
participants did attend to both the number of elements in
the subset and the total number of elements, yet they did
not respond with the correct fractions. Therefore, it
appears that the perceptually rich, contextualized format
distracted some children from attending to the entire
number of elements in the set. For other children who did
attend to the entire set, the contextualized format was less
likely to prompt accurate fraction labeling in comparison
to a generic format.
The results of Experiment 2 also demonstrate that the

hindering effects of short exposure on perceptually rich,
contextualized representations can last beyond the time
when the material is present. Accuracy of participants in
the contextualized-then-generic condition was lower than
that of participants in the generic-then-contextualized
condition not only on the initial question set but also on
subsequent generic questions. At the same time, initial
exposure to the generic representation in the generic-
then-contextualized condition also produced a lasting
effect by facilitating the recognition of the relevant
relations and accurate fraction labeling on subsequent
contextualized questions.

Taken together, the results of Experiments 1 and 2
suggest that the colorful, contextualized representations
of proportion hindered the spontaneous ability to
recognize the mathematical relations that define the
concept of fraction and the ability to learn and transfer
fraction knowledge. While the material used in the two
conditions of Experiment 1 differed on three dimen-
sions: student-made versus pre-made, perceptually rich
versus perceptually sparse, and contextualized versus
decontextualized, the results of Experiment 2 suggest
that the appearance of the material itself, in absence of
making it, hindered students’ ability to recognize frac-
tions. As mentioned earlier, it is also possible that the
act of constructing the material prior to instruction
contributed to lowering levels of learning and transfer in
the student-made material condition of Experiment 1.
Making the material increased students’ non-symbolic
experience with the material; previous studies have
shown that increasing non-symbolic use of an object de-
creases the likelihood that children will use the object as
a symbol for something else (DeLoache, 1995, 2000;
Uttal, et al., 1995). Therefore, the act of making the ma-
terial may make it more difficult for the student to see
the material as a symbol for the mathematics it is
intended to represent.
There are a few limitations of this study. First, the

teacher survey was administered online. As such, the
group of respondents may have included teachers who
are comfortable with computers and technology, but
omitted some teachers who are less comfortable with
these. However, given that teachers have active email
addresses and many schools have student grade informa-
tion available to parents online, we expect that most
teachers are relatively comfortable using computers and
use them for some aspects of their work. Therefore, in
this sense, we expect that the sample is relatively repre-
sentative of the population of practicing elementary
school teachers in the United States. In addition, the
survey results include only responses of teachers who
chose to take the survey. Teachers who were willing to
take the time to complete the survey may perhaps have
different beliefs and practices than teachers who did not
respond. Respondents may be more engaged in their
teaching, more receptive to educational research, more
receptive to a variety of instructional approaches, or
different in some other way from teachers who chose
not to respond. If this is the case, then the survey find-
ings may not generalize to all teachers.
A second limitation is that the sample size of Experi-

ment 1 was relatively small. While the results of Experi-
ment 2 support those of Experiment 1, future studies
can extend the research by examining the effect of
student-made representations on the acquisition of
different mathematical concepts and at different stages
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of development. The advantage of instruction with
generic pre-made material over instruction with the
colorful, contextualized student-made material would
likely generalize to the acquisition of other mathematical
concepts because mathematical concepts are defined by
relations and are independent of superficial features of
specific contexts (see Kaminski & Sloutsky, 2011 and
Kaminski, et al., 2013 for discussion). Therefore, inte-
grating mathematics instruction with other activities and
perceptually rich, contextualized material often adds
extraneous information that can potentially distract the
learner from the relevant relations. The likelihood and
degree of negative effects on learning and transfer due
to the extraneous information would depend on the
relational complexity of the concept being learned and
the level of development of the learner. Lower relational
complexity and/or higher level of a student’s attentional
focus would likely minimize such negative effects. Defin-
ing the precise level of relational complexity at which
differences arise requires additional research, but would
likely depend on children’s level of development and
prior mathematical knowledge.
The present research did not separate the effects of the

perceptual richness from those of contextual familiarity.
While previous research has shown that unfamiliar, irrele-
vant perceptual richness can hinder both learning and
transfer even in adults (Sloutsky, et al., 2005), irrelevant
perceptual richness may have advantages for young chil-
dren’s ability to apply previously acquired mathematical
knowledge. Pre-schoolers were more accurate on a count-
ing task involving perceptually rich, unfamiliar objects
than on the same task involving either perceptually rich,
familiar objects or perceptually sparse objects (Petersen &
McNeil, 2013). This evidence suggests that the hindering
effects of the perceptually rich, contextualized material
(i.e., pizzas) on children’s ability to label proportions with
fractions in Experiment 2 may be due primarily to the
familiar contextualization and not necessarily the percep-
tual richness itself. In other words, viewing proportions
instantiated with familiar material may activate extraneous
information (e.g., “I like pizza”, “it has pepperoni”, etc.)
that diverts attention from the relational structure of the
mathematics. In the context of known mathematical
concepts, irrelevant perceptual richness, like that used in
the Petersen and McNeil study, may activate little concep-
tual knowledge and hence have little power to divert
attention from the relevant relations.
Experiment 2 involved participants who had some pre-

vious instruction on fractions, but the extent of instruc-
tion and the format of instructional material they had
are not known. Therefore, we do not know the extent to
which participants may have previously seen fraction
representations similar to those used in Experiment 2.
Simple area models, such as circles, and contextualized

models, such as pizzas, appear in many textbooks and
instructional materials (e.g., Beckman, 2018) and most of
the survey respondents indicated that they have used
both circles and pizzas as fraction representations.
Therefore, we expect that both the generic and contex-
tualized questions are similar to common instructional
material. However, it is possible that participants may
have had more exposure to simple representations
similar to circles than to contextualized representations
similar to pizza. Area models are explicitly recom-
mended in curriculum standards (e.g., National Govern-
ors Association Center for Best Practices, Council of
Chief State School Officers, 2010), and our survey results
also indicate that more teachers have used the circles
than pizzas to represent fractions. If the generic ques-
tions of Experiment 2 were more similar in format to
participants’ previous experiences with fractions than
were the contextualized questions, then higher similarity
between learning and transfer contexts could in part
explain the higher accuracy on the generic questions
than on the contextualized questions. If this is the case,
it demonstrates that participants’ fraction learning from
simple representations, similar to circles, accurately
transferred to the generic questions as well as the con-
textualized questions. However, this possibility does not
explain the effects of question order on accuracy and
why initially viewing the contextualized questions
hindered accuracy on all of the subsequent questions. As
we have suggested, contextualized representations may
be difficult to view as representations of mathematics
because they communicate additional, non-essential
information that simple generic representations do not.
In terms of the material of Experiment 2, young students
may see a proportion of a circle primarily as something that
stands for a fraction. Proportions of circles appear to have
activated previous fraction knowledge that allowed partici-
pants to correctly answer generic questions as well as
subsequent contextualized questions. At the same time,
young students may see a proportion of a pizza primarily as
something you can eat. Once this nonmathematical inter-
pretation of the material is activated, it may be difficult for
children to spontaneously ignore, making it difficult to
correctly answer both the contextualized questions and the
subsequent generic questions.
It is important to contrast the present study with other

research and educational initiatives that explore
students’ mathematical reasoning in the course of mak-
ing things. For example, the Recrafting Mathematics
Education project (e.g., Gresalfi & Chapman, 2017)
examines students’ reasoning, problem-solving, and
design through knitting and making other textile crafts.
The researchers suggest that making crafts from textiles
may be a one way of engaging some students, particu-
larly female students, in mathematical reasoning.
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Findings suggest students can successfully problem solve
and notice patterns in the context of such craft making
(Gresalfi & Chapman, 2017). Other research has exam-
ined how aspects of STEM (science, technology, engin-
eering, and mathematics) education might be integrated
with philosophies of the maker culture. This culture
encourages learning through communities that use a
“do-it-yourself”, less formal approach to learning to
make things, ranging from textile and wooden crafts to
electronics and computer code. For example, maker
environments have been successful at teaching aspects
of basic electronic circuitry through activities in which
students use conductive thread to sew circuits into
fabrics connecting sources and loads, such as LED lights
(Peppler, & Glosson, 2013; Peppler, Gresalfi, Tekinbas,
& Santo, 2014; Peppler, Halverson, & Kafai, 2016).
Maker-environments can generate student interest and
allow for tinkering and trial and error, which can pro-
mote learning in the given domain.
These educational initiatives demonstrate that craft-

oriented and maker-oriented programs have benefits; they
can promote student interest in applications of science
and mathematics. They can give students opportunities to
practice applying basic mathematics and/or to learn the
basics of scientific concepts. However, neither has been
shown to promote learning of a new mathematical con-
cept and transfer of this knowledge to standard symbolic
mathematics and new domains. The research on knitting
and textile craft activities indicates that students can
recognize and apply mathematics of counting, measure-
ment, and arithmetic to problem solve in these craft do-
mains, particularly when they are already familiar with the
domain (Gresalfi & Chapman, 2017). This is evidence that
students can recognize and apply previously learned math-
ematics, not acquire new mathematics. Successful learning
of basic circuitry from maker activities is evidence that stu-
dents can learn the basics of a scientific concept through
hands-on, tinkering, making experiences. However, it is
unclear whether successful learning in these concrete
contexts translates to knowledge of formal principles, such
as Ohm’s Law of electrical current, or the ability to apply
what was learned to new contexts. In contrast, the goal of
Experiment 1 was to examine learning of new mathemat-
ical information through an activity in which students made
material to represent the to-be-learned mathematics and
transfer of this information to standard symbolic mathem-
atics and novel questions.

Conclusions
The results of the present study underscore the import-
ance of researching the effectiveness of instructional ac-
tivities that teachers actually use in classrooms, many of
which are not explicitly part of the standard curriculum
but are inspired by informal sources. With respect to

hands-on activities with physical material, previous re-
search has shown that some can be effective (e.g., Siegler
& Ramani, 2009; Tsang, et al., 2015), but that is not
always the case (e.g., Ball, 1992). The effectiveness of
activities with manipulatives depends on both the man-
ner in which students interact with the material (Tsang,
et al., 2015) and the material itself. Manipulating
physical representations of mathematical concepts can
provide students with perceptual information that corre-
lates with the mathematical structure and may facilitate
learning, but both the material and the student interac-
tions with it need to promote recognition of the relevant
mathematical structure. Our findings suggest that
perceptually rich, contextualized material, including
those that are made by the student, can make this
recognition difficult in comparison to simple generic
material. Previous research has shown that fading per-
ceptually rich material into perceptually sparse, more
generic material can improve learning and transfer (Fyfe,
McNeil, Son, & Goldstone, 2014; Goldstone & Son,
2005; McNeil & Fyfe, 2012). However, as Tsang et al.
(2015) suggest, when learning from interaction with
physical material, learners can build an appropriate
mental model of the mathematics, but it is likely that
residual traces of the physical material and actions on
the material remain (see Kaminski & Sloutsky, 2011 for
a related discussion). Making elaborate, colorful, contex-
tualized representations would likely increase the extra-
neous, potentially irrelevant information that is stored as
part of the mental representation of the mathematics,
even if fading or other measures to connect the student-
made material to more generic representations were
employed.
We are not suggesting that activities that integrate

mathematics and arts, crafts, or other contextualized
settings should never be used in the classroom. However,
the present results do suggest that for initial instruction
on a new or recently introduced elementary mathematical
concept, colorful, contextualized student-made material
should be avoided or used with caution, particularly with
young children.
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