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A goal of successful learning is transfer, or the ability
to apply acquired knowledge outside of the learned situ-
ation. For example, if one learned how to calculate the
probability of heads occurring twice on two fair coin
tosses in a mathematics classroom, one should be able to
apply this knowledge to the biology problem of calculat-
ing the probability that a recessive trait would be mani-
fested in two offspring individuals. However, sponta-
neous transfer is notoriously difficult to achieve, even for
relatively simple knowledge (Detterman, 1993). What
factors hinder or facilitate transfer?

A deeply entrenched and widely held belief in the ed-
ucation community has been that learning and transfer
can be facilitated through the use of concrete materials,
which include both physical manipulatives and concrete
instantiations of abstract concepts. For example, 84% of
surveyed secondary school mathematics teachers ex-
pressed a belief that such concrete materials have facilita-
tive effects on learning (Howard, Perry, & Tracey, 1997).

However, it seems likely that facilitative effects of con-
creteness are limited to cases in which concrete represen-
tations communicate relevant aspects of the to-be-learned
information (for a review, see Goldstone & Sakamoto,
2003). For example, two closed and connected containers
with a fixed amount of fluid, which can freely flow be-
tween the containers, may more easily communicate the
idea of two players involved in a zero-sum game than the
equation x � y � K. Similarly, Dienes blocks (Dienes,
1960) can communicate the idea of the base 10 number

system, thus possibly facilitating learning of the system.
However, even if this “relevant concreteness” facilitates
learning, its effects on transfer are questionable (e.g.,
Goldstone & Sakamoto, 2003).

At the same time, concrete materials (or concrete repre-
sentations of a to-be-learned structure) often communi-
cate much information without communicating relevant
aspects of the to-be-learned information. For example,
when different numerosities are represented by a differ-
ent number of frogs (as opposed to being represented by
a different number of dots), the representation commu-
nicates additional, irrelevant information (e.g., shape,
color, and animacy). Our goal is to examine effects of
this “irrelevant concreteness” on learning and transfer.
There are reasons to believe that, unlike more abstract
and generic representations, such concrete and perceptu-
ally rich representations may not facilitate transfer (cf.
Bassok & Holyoak, 1989). 

First, although concrete materials may be more inter-
esting and engaging than more abstract, generic materi-
als, the former may have limited referential flexibility.
This could be because perceptually rich, concrete enti-
ties are more likely to be considered objects than sym-
bols denoting other entities. For example, whereas it is
easy to use a dot as symbol of a car, a bird, or a train, it
is more difficult to use a car as a symbol of a bird. There-
fore, knowledge gleaned from perceptually rich objects
could be less portable than knowledge gleaned from more
abstract, generic entities. As a result, the latter could be
easier to transfer than the former. 

These intuitions are supported by a series of studies
(DeLoache, 2000; see also Uttal, Liu, & DeLoache, 1999,
for related arguments), demonstrating that while young
children have no difficulty understanding that a photo-
graph of a room is a symbol of the room, they had a much
harder time understanding that the physical model of the
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room was a symbol of the room rather than an entirely
different object. The results of other studies (e.g.,
Schwartz, 1995) indicate that pictures with high fidelity
to their referents are more tightly linked to these refer-
ents than are pictures with low fidelity. Evidence also
shows that children (Gentner & Medina, 1998) and
adults (Markman & Gentner, 1993) are more likely to
notice a common nonperceptual relation among objects
in a scene when these objects are perceptually sparse
than when they are perceptually rich.

Furthermore, in the case of irrelevant concreteness,
properties of a representation that are not a part of the to-
be-learned knowledge (i.e., surface features) may be erro-
neously interpreted as a part of the to-be-learned knowl-
edge, thus hindering transfer (Bassok & Olseth, 1995;
Bassok, Wu, & Olseth, 1995; Ross, 1984, 1987, 1989).
Finally, there is recent evidence of possible competition
between abstract and concrete representations of the
same situation and that salient concrete representations
may distract learners from more abstract regularities
(Goldstone & Sakamoto, 2003).

Therefore, it seems that under most conditions (i.e.,
outside of situations with relevant concreteness), percep-
tually rich, concrete representations may hinder transfer
(and possibly learning) by distracting the learner from
the relevant structure and/or by limiting referential flex-
ibility of the representation. More generic, abstract ma-
terials may also in fact facilitate transfer. Our goal in this
research was to investigate these possibilities. To examine
transfer, we created two artificial (thus novel) and iso-
morphic domains. We created artificial domains (rather
than using existing ones) to eliminate potential con-
founds stemming from differential prior knowledge, ex-
pectations, or experience across the domains.

Both domains were artificially constructed algebraic
commutative groups of order three, each being isomor-
phic to the integers under addition modulo three. The
concreteness of materials was manipulated by increas-
ing the perceptual richness of symbols denoting entities
in each domain. The first, more abstract, domain (here-
after “math”) was presented to the participants as a sym-
bolic language in which three types of symbols combine
to yield a resulting symbol. The second, more concrete,
domain (hereafter “science”) involved interactions be-
tween three-dimensional (3-D) objects from three classes.
The objects dynamically moved toward each other and
merged to form a resulting object. In Experiments 1 and
2, we examined the effects of perceptual richness on
transfer or an improvement in learning and performance
in one domain after learning the other domain. In Ex-
periment 3, we examined the effects of perceptual rich-
ness on learning.

EXPERIMENT 1

The goal of Experiment 1 was to investigate transfer
of learning across the two isomorphic artificial domains.
The participants learned both math and science. Half of the
participants learned math first, and half learned science

first. Transfer was measured by comparing average test
scores on a given domain as a function of prior learning of
the other domain. Test questions probed students’ ability
to apply learned knowledge to complex, novel problems.

Method
Participants. Thirty undergraduate students from Ohio State

University participated in the experiment and received partial credit
in an introductory psychology course.

Design and Materials. The experiment comprised four phases
presented over 1 h: (1) training in domain X, (2) test in domain X,
(3) training in domain Y, and (4) test in domain Y, with the partic-
ipants randomly assigned to a particular order of learning (i.e.,
math-then-science or science-then-math). The experiment had a 2
(domain: math vs. science) � 2 (order: math-then-science vs.
science-then-math) mixed design, with order as a between-subjects
factor and domain as a repeated measure. Training and testing in the
first domain was followed immediately by training and testing in
the second domain. After testing, the participants were asked to rate
the similarity of the two domains on a scale from 1 to 5, with a rat-
ing of 1 indicating that the domains were completely different, and
a rating of 5 indicating that the domains were identical.

Test scores for math and science were compared across the two
conditions, math-then-science and science-then-math. Transfer due
to learning of math was taken to be the difference in the average
science score for math-then-science and the average science score
for science-then-math. Similarly, transfer due to learning of science
was taken to be the difference in the average math score for science-
then-math and the average math score for math-then-science.

In each domain, the entities interacted according to the rules of
an algebraic commutative group (these rules are presented in Table 1).
The goal of training was to learn the four specific rules presented
in Table 1, and properties of these rules (i.e., associativity, commu-
tativity, and the existence of the identity element and of inverse el-
ements), with training in both domains being isomorphic. All rules
were presented one at a time and stated explicitly. For example,
when a specific rule was presented in the math domain, the students
were told that a combination of symbol “�” and symbol “��” always
results in symbol “�,” with the operation being written as follows:
�, ��� �. A rule such as commutativity was not stated explicitly
as “commutativity” but was rather shown as explicit examples: “�,
�� gives the same result as ��, �.” In the science domain, rules were
presented similarly, except that objects rather than symbols were
shown (see Table 1 for examples of objects), with operations being
presented as dynamic interactions of these objects. Presentation of
each rule was followed by a memory check with feedback.

Testing consisted of 20 multiple-choice questions designed to
measure the participants’ ability to apply the learned rules to novel
problems; none of the test questions used examples that were pre-
sented during training. Each test question had only one correct an-
swer, and most of the questions required application of multiple
rules. Some of the questions were significantly more complicated
than those presented in the training. The following are examples of
multiple-choice test questions.

(1) What can go in the blanks to make a correct statement?

___, �, ___, ��� �� ?

Choose from the following: (a) � and �, (b) � and �, (c) �� and ��, and
(d) � and �. 

(2) Find the resulting symbol: 

�, ��, ��, �� _____.

(3) Do the following statements have the same results? 

��, �, �, ��� ? and ��, �, ��, �� ?

For both domains, the test questions were completely isomorphic
and were presented in the same order.
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Procedure. The participants were tested individually, with all
training and testing being presented on a computer screen in a self-
paced manner, with the researcher recording the participants’ re-
sponses. The presentation of the two domains differed by storyline.
The artificial math was presented as a symbolic language discov-
ered on an archaeological search. Symbols of different categories
combined to yield a resulting symbol. The artificial science was ex-
plained as a phenomenon observed on a planet outside of our solar
system. Objects from different classes of shapes interacted to form
a resulting shape. The presentation of the artificial science included
movie clips demonstrating the interactions, with two or more ob-
jects coming in contact, and the interaction resulting in the emer-
gence of a new object.

Results and Discussion
Participants’ similarity ratings of the domains confirmed

that the two domains were isomorphic. On a similarity
scale from 1 (completely dissimilar) to 5 (structurally
identical ), the mean rating given by math-then-science
participants was 4.6 (SD � .84), and the mean rating
given by science-then-math participants was also 4.6
(SD � .50).

The data on learning and transfer across the domains
are presented in the left panel of Figure 1. First, partici-
pants successfully learned in both domains [Mscience �

16.8, Mmath � 16.6], both above chance [one-sample
ts(27) � 21.0, ps � .001]. Second, there was a significant
difference in performance as a function of learning order.
Test scores were submitted to a two-way analysis of vari-
ance (ANOVA), with order as a factor and domain as a
repeated measure. The analysis indicated a significant
order � domain interaction [F(1,26) � 4.076, p � .054].
The participants in the math-then-science condition
performed significantly better on the science test than
did the participants in the science-then-math condition
[independent-samples t(26) � 2.6, p � .05]. At the same
time, there was no difference in math scores across con-
ditions [independent-samples t(26) � 1].

It could be argued, however, that the reported inter-
action was due to high accuracy in the math. Because
participants exhibited near-ceiling accuracy in both or-
ders of math, there was little room for improvement as a
result of learning science. To examine this possibility, we
performed a separate analysis on students who exhibited
lower learning scores (i.e., fewer than 16 items correct)
in the domain that was learned first. The results indicate
that, contrary to the ceiling-effect explanation, the inter-
action was even more pronounced for these lower per-

Table 1
Example of Stimuli and Transformation Rules Across the Two Domains

Science Math Math
Experiments 1 and 2 Experiment 1 Experiment 2

Elements � �� �

Rules of commutative group
Associativity For any elements x, y, z:  [(x + y) + z] = [x + (y + z)]
Commutativity For any elements x, y:  x + y = y + x
Identity There is an element, I, such that for any element, x:  x + I = x
Inverses For any element, x, there exists another element, y, such that  x + y = I

Specific rules is the identity � is the identity is the identity

Operands Result Operands Result Operands Result

�� �� �

� � ��

�� � �
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forming students [F(1,12) � 17.053, p � .002], with no
significant differences between the two orders of math
[Mmath-then-science � 14.6, SD � 0.79 vs. Mscience-then-math �
16.3, SD � 2.50; independent-samples t(12) � 1.7, p �
.12] and significant differences between the two orders
of science [Mscience-then-math � 13.9, SD � 1.46 vs. 
Mmath-then-science � 17.3, SD � 0.76; independent-samples
t(12) � 5.51, p � .0001].

The higher average science score for participants in
the math-then-science condition than for the science-
then-math conditions suggests that learning of math fa-
cilitated their learning of science, whereas learning of
science did not facilitate learning of math. Because both
domains were novel, these data suggest that knowledge
presented in a more abstract, generic format facilitates
acquisition of knowledge presented in a more perceptu-
ally rich, concrete format.

It could be counterargued, however, that the observed
differential transfer may stem from other differences be-
tween the domains. In particular, there was a difference
in cover story; and more important, science was pre-
sented in a dynamic format, whereas math was presented
in a static format.

This issue was addressed in Experiment 2. In particu-
lar, if the observed differences in learning stem from the
concreteness of materials, rather than from extraneous
factors, introducing math in a more concrete format than
science should lead to an attenuation or a reversal of the
differential transfer effects found in Experiment 1.

EXPERIMENT 2

Method
Participants. Thirty undergraduate students from Ohio State

University participated in the experiment and received partial credit
in an introductory psychology course.

Materials, Design, and Procedure. The materials used were
identical to those of Experiment 1, with one critical difference;
math symbols were replaced by images of 3-D objects, as is shown
in Table 1. Each image was a specific identifiable object, and there-
fore math materials in Experiment 2 were more concrete than sci-
ence materials, which were unfamiliar objects. The design and pro-
cedure of the experiment were identical to those of Experiment 1.

Results and Discussion
As in Experiment 1, students in both learning order

conditions noticed the similarity between the two domains,
with the average similarity rating in the math-then-science
condition being 4.3 (SD � .62), and the average similar-
ity rating for the science-then-math condition being 4.7
(SD � .46), with no significant differences between the
conditions.

Test scores by conditions are presented in the right
panel of Figure 1. As in Experiment 1, students success-
fully learned in both domains (Mscience � 16.8, Mmath �
15.9), both above chance ( ps � .001). However, this
time, the learning of math first was less successful than
the learning of science first. Furthermore, a reversal of
transfer from Experiment 1 was found (see the right
panel in Figure 1): Unlike in Experiment 1, where learn-
ing of math facilitated learning of science, in this exper-
iment, learning of science facilitated learning of math,
with math scores in the science-then-math condition
being higher than those for students in the math-then-
science condition.

These results were supported by an order � domain
mixed ANOVA, which revealed a significant domain �
order interaction [F(1,28) � 22.055, p � .001], with no
significant differences between the two science orders
[independent-samples t(28) � 1.1, p � .27] and signifi-
cant differences between the two math orders [independent-
samples t(28) � 3.428, p � .01]. Furthermore, there was
a significant effect of domain [F(1,28) � 4.22, p � .05],
with participants in the math condition (which used per-
ceptually rich symbols) exhibiting lower test scores than
participants in the science condition, thus suggesting
that the use of perceptually rich symbols may negatively
affect learning.

The results of Experiments 1 and 2 indicate that trans-
fer of learning is facilitated when initial learning in the
base domain involves objects that are more abstract and
generic than those of the target domain. Furthermore, the
results suggest that the concreteness of objects hinders not
only transfer, but learning itself. To examine the effects of
concreteness on learning, we conducted Experiment 3.

Figure 1. Mean test scores for math and science by the order of learning. Error bars rep-
resent standard errors of the mean.
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EXPERIMENT 3

Method
Participants. Eighty-one undergraduate students from Ohio

State University participated in the experiment for partial credit in
an introductory psychology course.

Materials, Design, and Procedure. The story line and training
were identical to those used in the math condition of Experiments 1
and 2. However, the symbols varied across conditions, as shown in
Table 2. The participants were randomly assigned to one of four con-
ditions: (1) perceptually sparse black symbols, (2) perceptually rich
correlated symbols, (3) perceptually rich uncorrelated symbols, and
(4) perceptually rich real objects. The perceptually rich, correlated and
uncorrelated symbols had four dimensions: shape (which was the
determiner of their category membership), outline color, interior
pattern, and interior pattern color. In the perceptually rich, corre-
lated condition, color and pattern of shading of symbols correlated
with their shape (e.g., circles were always red, whereas diamonds
were green). In the uncorrelated condition, the relevant feature of a
symbol was its shape, and the color and pattern of shading varied
independently (see Table 2). The perceptually rich, correlated and
uncorrelated conditions were included to investigate whether ran-
dom variance makes learning difficult (in which case the correlated
condition should elicit better learning than the uncorrelated condi-
tion) or whether perceptual richness itself makes learning difficult
(in which case there should be little or no difference between the
correlated and uncorrelated conditions). The real objects were sim-
ilar to those used in Experiments 1 and 2 (see Table 2 for exam-
ples). The training and testing procedures were identical to those
used in Experiments 1 and 2.

Results and Discussion
Learning scores are presented in Figure 2. First, stu-

dents in all conditions learned the material, exhibiting
above-chance performance at test (all ps � .001). More
important, there were significant differences among the
conditions [F(3,65) � 3.85, p � .05], with participants
in the black symbol condition performing significantly
better than those in the uncorrelated condition or the real
objects condition (post hoc Tukey test, all ps � .05) and
marginally better than those in the correlated condition
( p � .065). At the same time, there was no difference
among the perceptually rich conditions (post hoc Tukey
test, all ps � .9). The latter two findings are of utmost im-
portance, indicating that perceptual richness hindered
learning.

GENERAL DISCUSSION

The three reported experiments reveal several key reg-
ularities. Experiment 1 indicated that transfer of learning
between two isomorphic domains (e.g., performance in
the second domain after learning of the first domain)
was greater when the first domain used more abstract,
generic representations than when it used perceptually
rich, concrete representations. Experiment 2 replicated
these findings, while introducing some additional con-
trols. Experiment 3 indicated that the use of perceptually
rich, concrete materials hinders learning. Overall, results
of the three reported experiments present novel findings
indicating that irrelevant concreteness of study materials
negatively affects both learning and transfer.

Note that recent evidence (Goldstone & Sakamoto,
2003) indicates that perceptually rich, concrete represen-
tations facilitate learning of complex principles. However,
Goldstone and Sakamoto used concrete representations
communicating relevant aspects of the to-be-learned in-
formation (i.e., active agents were represented as ants,
and stationary resources were represented as apples, as
opposed to a more abstract representation, in which both
agents and resources were represented as dots). Unlike
Goldstone and Sakamoto’s experiments, our research
used concrete materials that did not communicate rele-
vant aspects of the to-be-learned information. Taken to-
gether, results of Goldstone and Sakamoto and those of
the present experiments indicate that in order to facilitate
learning, concrete representations have to capture im-
portant aspects of to-be-learned knowledge; otherwise,
concrete representations would hinder, rather than facil-
itate, learning. 

Several factors can account for these effects of irrele-
vant concreteness on learning and transfer. First, concrete
representations may automatically engage the perceptual
system while preventing deeper conceptual processing.
Furthermore, perceptually rich, concrete representations
can increase dissimilarity between entities in both do-
mains, thus limiting structural alignment, which could
be important for the extraction of underlying relational
commonalities: Some evidence shows that perceptually
sparse representations are more likely to emphasize a

Table 2
Examples of Symbols Used Across Conditions in Experiment 3

Perceptually Rich Perceptually Rich Perceptually Rich
Perceptually Sparse Symbols Symbols Symbols

Symbols (Features are correlated) (Features are uncorrelated) (Real objects)
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nonperceptual relation among entities than perceptually
rich representations (Gentner & Medina, 1998; Gentner
& Rattermann, 1991; Markman & Gentner, 1993).

Second, irrelevant aspects of a concrete representation
could be erroneously interpreted as a part of the to-be-
learned knowledge (Bassok & Olseth, 1995; Bassok, Wu,
& Olseth, 1995; Ross, 1984, 1987, 1989). Finally, con-
crete objects may have limited referential flexibility, be-
cause they are more likely to be interpreted as entities than
as symbols (DeLoache, 2000; Uttal, Liu, & DeLoache,
1999; see also Goldstone & Sakamoto, 2003), and as a re-
sult, participants may fail to apply knowledge learned
about more concrete entities to more abstract entities.

The fact that irrelevant concreteness was found to hin-
der both learning and transfer may have important im-
plications for our understanding of learning of complex
domains, specifically that of mathematics and science.
The dominant view in the educational community has
been that perceptually rich, concrete, and entertaining
materials are useful for acquisition of knowledge and
transfer of this knowledge outside the learned situations
(Ball, 1992; Cobb, Yackel, & Wood, 1992). Our research
suggests that although intuitively appealing, this view
may be very limited. In order to facilitate learning, per-
ceptually rich, concrete representations must communi-
cate relevant aspects of the to-be-learned information.
However, even then there might be a tradeoff between
learning and transfer (cf. Goldstone & Sakamoto, 2003).
In addition, the results of the present research indirectly
suggest that learning of mathematics, which is populated
by abstract entities represented by generic symbols, can
facilitate learning of science, which is populated by more
perceptually rich, concrete entities.
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Figure 2. Mean test scores for math in Experiment 3. Error bars rep-
resent standard errors of the mean.
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