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Abstract knowledge, such as mathemat-
ical knowledge, is often difficult to
acquire and even more difficult to

apply to novel situations (1–3). It is widely
believed that a successful approach to this chal-
lenge is to present the learner with multiple
concrete and highly familiar
examples of the to-be-learned
concept. For instance, a mathe-
matics instructor teaching sim-
ple probability theory may
present probabilities by ran-
domly choosing a red marble
from a bag containing red and
blue marbles and by rolling a
six-sided die. These concrete,
familiar examples instantiate
the concept of probability and
may facilitate learning by con-
necting the learner’s existing
knowledge with new, to-
be-learned knowledge. Alter-
natively, the concept can be
instantiated in a more abstract
manner as the probability
of choosing one of n things from a larger set
of m things. 

The belief in the effectiveness of multiple
concrete instantiations is reasonable: A student
who sees a variety of instantiations of a con-
cept may be more likely to recognize a novel
analogous situation and apply what was
learned. Learning multiple instantiations of a
concept may result in an abstract, schematic
knowledge representation (1, 4), which, in
turn, promotes knowledge transfer, or applica-
tion of the learned concept to novel situations
(1, 5). However, concrete information may
compete for attention with deep to-be-learned
structure (6–8). Specifically, transfer of con-
ceptual knowledge is more likely to occur after
learning a generic instantiation than after
learning a concrete one (7).

Therefore, we ask: Is learning multiple
concrete instantiations the most efficient route
to promoting transfer of mathematical knowl-
edge? Here, we tested a hypothesis that learn-
ing a single generic instantiation (that is, one

that communicates minimal extraneous infor-
mation) may result in better knowledge trans-
fer than learning multiple concrete, contextu-
alized instantiations. 

In experiment 1, undergraduate college
students learned one or more instantiations of

a simple mathematical concept. They were
then presented with a transfer task that was a
novel instantiation of the learned concept. The
to-be-learned concept was that of a commuta-
tive mathematical group of order three. This
concept is a set of three elements, or equiva-
lence classes, and an operation with the asso-
ciative and commutative properties, an iden-
tity element, and inverses for each element.
This concept was chosen because it involves
the most basic properties of the real number
system, yet it is simple, novel to the study par-
ticipants, and can be easily instantiated in dif-
ferent ways. 

One instantiation used in this research was
generic. This instantiation was described as a
written language involving three symbols (see
figure, above) in which combinations of two or
more symbols yield a predictable resulting
symbol. Statements were expressed as symbol
1, symbol 2 → resulting symbol. Three other
instantiations (Concrete A, B, and C) were
concrete, contextualized, and involved ele-
ments that might appear meaningful in the
context. The Concrete A instantiation was
shown in previous research to facilitate quick
learning of the rules of the mathematical group

(6). The elements were three images of mea-
suring cups containing varying levels of liquid
(see figure, below). Participants were told
they needed to determine a remaining amount
when different measuring cups of liquid are
combined. Concrete B and C instantia-

tions were constructed
similarly, with story
lines and elements that
would assist learning.
The same mathemati-
cal rules were presented
in slices of pizza or
tennis balls in a con-
tainer, rather than por-
tions of a measur-
ing cup of liquid (9).
Eighty study partici-
pants were assigned to
one of four learning
conditions: Generic 1,
Concrete 1, Concrete
2, or Concrete 3, with
participants learning
one generic instantia-

tion, one concrete instantiation, two concrete
instantiations, or three concrete instantia-
tions, respectively. 

Training was equated across conditions; all
participants were presented with the same rules
and the same number of examples, questions
with feedback, and test questions. After this
learning phase, all participants were presented
with the same transfer task, which was a novel
concrete instantiation of the same group struc-
ture that was presented during learning. The
transfer instantiation involved perceptually rich
elements, as do many real-world instantiations
of mathematics, and was described as a chil-
dren’s game involving three objects (9). In the
game, children sequentially pointed to objects;
and a child who was “it” pointed to a final
object. If the child pointed to the correct final
object, then he or she was the winner. The cor-
rect final object was specified by the rules of
the game (rules of the mathematical group).
Participants received no explicit training in the
transfer domain. Instead, they were told that the
rules of the game were like the rules of the sys-
tem(s) they had just learned and that they could
figure out these rules by using their newly
acquired knowledge. After being asked to study
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a series of examples, from which the rules
could be deduced, they received a 24-question
multiple-choice test isomorphic to the ques-
tions they answered during the learning phase. 

In all conditions of this experiment (as well
as the other experiments reported here), partici-
pants successfully learned the material with no
differences in learning scores (F3,68 < 1) or
learning times (F3,68 < 1.5). However, there
were significant differences in transfer (see
experiment 1, in the figure above). Participants
in the Generic 1 condition performed markedly
higher than participants in each of the three
concrete conditions (F3,68 = 11.9, P < 0.001;
post hoc Tukey’s test, P values < 0.002).
Furthermore, transfer in the Generic 1 con-
dition was above chance (t > 7, P <0.005),
whereas transfer in the concrete conditions did
not reliably exceed chance (t values < 1.7, P
values > 0.35; t = 2.8, P = 0.06 for Concrete 3).

These results indicate that learning one,
two, or three concrete instantiations resulted in
little or no transfer, whereas learning one
generic instantiation resulted in significant
transfer. If transfer from multiple instantiations
depends on whether the learner abstracts and
aligns the common structure from the learned
instantiations (1, 4), then transfer failure sug-
gests that participants may have been unable to
recognize and align the underlying structure. 

In two additional experiments, we assisted
structural alignment. In experiment 2, 20 par-
ticipants learned Concrete A and Concrete B
instantiations and were given the alignment of
analogous elements across the learning instan-
tiations. To our surprise, this assistance yielded
no improvement in transfer; scores were not
above chance (means ± SD: 41% ± 16.7%, t19 =
0.94, P > 0.35). In experiment 3, we asked 20
participants after learning Concrete A and
Concrete B instantiations to compare them, by
matching analogous elements and writing any
observed similarities. Explicit comparisons
have been shown to facilitate transfer (5, 10).
All participants correctly matched elements,
but the distribution of transfer scores was

bimodal. Approximately 44%
of our participants scored
highly on the transfer test (95%
± 4.7%). However, the remain-
ing participants did not do well
(51% ± 11.6%). Therefore, the
act of explicit comparison may
help some, perhaps high-per-
forming, learners transfer, but
may not help others (11). 

Overall, concrete and ge-
neric instantiations have dif-
ferent advantages. Concrete
instantiations may be more
engaging for the learner and

may facilitate initial learning (6), but do not
necessarily promote transfer. At the same
time, generic instantiations can be learned and
do promote transfer. On these grounds, one
could argue that presenting a concrete instan-
tiation and then a generic instantiation may be
an optimal learning design for promoting
transfer. One could also argue that the con-
crete instantiations used in experiments 1 to 3
are very similar to each other and that success-
ful transfer might require instantiations that
are more diverse. 

We address these issues in experiment 4.
Forty participants were assigned to one of two
learning conditions: One-Generic (participants
learned the generic instantiation) or Concrete-
then-Generic (participants learned the Con-
crete A instantiation then the Generic instantia-
tion). The results were that participants who
learned only the generic instantiation outper-
formed those who learned both concrete and
generic instantiations (see experiment 4 in the
figure above; t31 = 2.7, P < 0.02).

Our findings suggest that giving college
students multiple concrete examples may not
be the most efficient means of promoting trans-
fer of knowledge. Moreover, because the con-
cept used in this research involved basic math-
ematical principles and test questions were
both novel and complex, these findings could
likely be generalized to other areas of mathe-
matics. For example, solution strategies may be
less likely to transfer from problems involving
moving trains or changing water levels than
from problems involving only variables and
numbers. Instantiating an abstract concept in a
concrete, contextualized manner appears to
constrain that knowledge and to hinder the abil-
ity to recognize the same concept elsewhere;
this, in turn, obstructs knowledge transfer. At
the same time, learning a generic instantiation
allows for transfer, which suggests that such an
instantiation could result in a portable knowl-
edge representation. Compared with concrete
instantiations, generic instantiations present
minimal extraneous information and hence

represent mathematical concepts in a manner
close to the abstract rules themselves. 

Because the difficulty of transferring
knowledge acquired from concrete instantia-
tions may stem from extraneous information
diverting attention from the relevant mathemat-
ical structure, concrete instantiations are also
likely to hinder transfer for young learners who
are less able than adults to control their atten-
tional focus. We have evidence that 11-year-
olds transferred successfully from a generic
instantiation, but not from a concrete one (12). 

If a goal of teaching mathematics is to pro-
duce knowledge that students can apply to
multiple situations, then presenting mathemat-
ical concepts through generic instantiations,
such as traditional symbolic notation, may be
more effective than a series of “good exam-
ples.” This is not to say that educational design
should not incorporate contextualized exam-
ples. What we are suggesting is that grounding
mathematics deeply in concrete contexts can
potentially limit its applicability. Students
might be better able to generalize mathemati-
cal concepts to various situations if the con-
cepts have been introduced with the use of
generic instantiations.

References and Notes
1. M. L. Gick, K. J. Holyoak, Cogn. Psychol. 15, 1 (1983).

2. L. R. Novick, J. Exp. Psychol. Learn. Mem. Cogn. 14, 510

(1988).

3. S. K. Reed, A. Dempster, M. Ettinger, J. Exp. Psychol.

Learn. Mem. Cogn. 11, 106 (1985).

4. L. R. Novick, K. J. Holyoak, J. Exp. Psychol. Learn. Mem.

Cogn. 17, 387 (1991).

5. R. Catrambone, K. J. Holyoak, J. Exp. Psychol. Learn.

Mem. Cogn. 15, 1147 (1989).

6. J. A. Kaminski, V. M. Sloutsky, A. F. Heckler, in Proceedings

of the 27th Annual Conference of the Cognitive Science

Society, B. Bara, L. Barsalou, M. Bucciarelli, Eds., Stresa,

Italy, 21 to 23 July 2005 (Lawrence Erlbaum, Mahwah, NJ,

2005), pp. 1090–1095.

7. V. M. Sloutsky, J. A. Kaminski, A. F. Heckler, Psychonom.

Bull. Rev. 12, 508 (2005).

8. R. L. Goldstone, Y. Sakamoto, Cogn. Psychol. 46, 414

(2003). 

9. Materials and methods are available as supporting mate-

rial on Science Online.

10. D. Gentner, J. Loewenstein, L. Thompson, J. Educ. Psychol.

95, 393 (2003).

11. Learning scores differed between participants who trans-

ferred and those who did not (means ± SD: 93% ± 4.4%

and 84% ± 12.9%, respectively), independent sample t

test, t
16

= 1.97, P = 0.066.

12. J. A. Kaminski, V. M. Sloutsky, A. F. Heckler, in

Proceedings of the 27th Annual Conference of the

Cognitive Science Society, R. Sun, N. Miyake, Eds.,

Vancouver, BC, 26 to 29 July 2006 (Lawrence Erlbaum,

Mahwah, NJ, 2006), pp. 411–416.

13. Supported by the Institute of Education Sciences, U.S.

Department of Education, through grants R305H050125

and R305B070407. The opinions expressed are those of

the authors and do not represent views of the Institute or

the U.S. Department of Education.

10.1126/science.1154659

Supporting Online Material
www.sciencemag.org/cgi/content/full/320/5875/454/DC1

www.sciencemag.org SCIENCE VOL 320 25 APRIL 2008 455

EDUCATIONFORUM

100

80

60

40

20

0

Concr 1 Concr 2 Concr 3 Gnrc 1 Concr-

Gnrc

1 Gnrc

Experiment 1 Experiment 4

chancePe
rc

en
t 

co
rr

ec
t

Transfer test scores across learning conditions (means ± SEM). 


